Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;37(1):95-103.
doi: 10.1007/s00467-021-05076-x. Epub 2021 Apr 30.

Fabry disease and kidney involvement: starting from childhood to understand the future

Affiliations
Review

Fabry disease and kidney involvement: starting from childhood to understand the future

Roberto Chimenz et al. Pediatr Nephrol. 2022 Jan.

Abstract

The accumulation of globotriaosylceramide (Gb-3) in multiple organs, such as the heart, kidney, and nervous system, due to mutations in the galactosidase alpha (GLA) gene, represents the key point of Fabry disease (FD). The common symptoms appear in childhood or adolescence, including neuropathic pain, angiokeratoma, acroparesthesia, and corneal opacities. A multi-organ involvement induces a significant deterioration in the quality of life with high mortality in adulthood. The accumulation of Gb-3 involves all types of kidney cells beginning at fetal development, many years before clinical manifestations. A decline in the glomerular filtration rate is rare in children, but it can occur during adolescence. Pediatric patients rarely undergo kidney biopsy that could assess the efficacy of enzyme replacement therapy (ERT) behind its diagnostic role. To date, diagnosis is achieved by detecting reduced α-Gal-A activity in leukocytes and plasma, allowing for the early start of ERT. This review focuses on pediatric kidney involvement in FD, analyzing in depth its diagnostic processes and treatment options.

Keywords: Children; Enzyme replacement therapy; Fabry disease; Inherited kidney disorder; Kidney biomarkers; Proteinuria.

PubMed Disclaimer

Comment in

References

    1. Germain DP (2010) Fabry disease. Orphanet J Rare Dis 5:30 - PubMed - PMC
    1. Hopkin RJ, Bissler J, Banikazemi M, Clarke L, Eng CM, Germain DP, Lemay R, Tylki-Szymanska A, Wilcox WR (2008) Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr Res 64:550–555 - PubMed
    1. Di Martino MT, Scionti F, Sestito S, Nicoletti A, Arbitrio M, Hiram Guzzi P, Talarico V, Altomare F, Sanseviero MT, Agapito G, Pisani A, Riccio E, Borrelli O, Concolino D, Pensabene L (2016) Genetic variants associated with gastrointestinal symptoms in Fabry disease. Oncotarget 7:85895–85904 - PubMed - PMC
    1. Favalli V, Disabella E, Molinaro M, Tagliani M, Scarabotto A, Serio A, Grasso M, Narula N, Giorgianni C, Caspani C, Concardi M, Agozzino M, Giordano C, Smirnova A, Kodama T, Giuliani L, Antoniazzi E, Borroni RG, Vassallo C, Mangione F, Scelsi L, Ghio S, Pellegrini C, Zedde M, Fancellu L, Sechi G, Ganau A, Piga S, Colucci A, Concolino D, Di Mascio MT, Toni D, Diomedi M, Rapezzi C, Biagini E, Marini M, Rasura M, Melis M, Nucera A, Guidetti D, Mancuso M, Scoditti U, Cassini P, Narula J, Tavazzi L, Arbustini E (2016) Genetic screening of Anderson-Fabry disease in probands referred from multispecialty clinics. J Am Coll Cardiol 68:1037–1050 - PubMed
    1. Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, Ortiz A (2013) Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis 8:116 - PubMed - PMC

LinkOut - more resources