Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun:126:105118.
doi: 10.1016/j.archoralbio.2021.105118. Epub 2021 Apr 8.

A salivary microbiome-based auxiliary diagnostic model for type 2 diabetes mellitus

Affiliations

A salivary microbiome-based auxiliary diagnostic model for type 2 diabetes mellitus

Yun-Kun Liu et al. Arch Oral Biol. 2021 Jun.

Abstract

Objective: Studies have shown that oral microbiota composition is altered in type 2 diabetes mellitus, implying that it is a potential biomarker for diabetes. This study aimed at constructing a noninvasive auxiliary diagnostic model for diabetes based on differences in the salivary microbial community.

Design: Salivary microbiota from 24 treatment-naive type 2 diabetes mellitus patients and 21 healthy populations were detected through 16S rRNA gene sequencing, targeting the V3/V4 region using the MiSeq platform. Salivary microbiome diversity and composition were analyzed so as to establish a diagnostic model for type 2 diabetes.

Results: Salivary microbiome for treatment-naive type 2 diabetes mellitus patients was imbalanced with certain taxa, including Slackia, Mitsuokella, Abiotrophia, and Parascardovia that being significantly dominant, while the abundance of Moraxella was high in healthy controls. Diabetic patients exhibited varying levels of Prevotella nanceiensis and Prevotella melaninogenica which were negatively correlated with glycosylated hemoglobin and fasting blood glucose levels, as well as fasting blood glucose levels, respectively. Based on differences in salivary microbiome composition between diabetic and healthy groups, we developed a diagnostic model that can be used for the auxiliary diagnosis of type 2 diabetes mellitus with an accuracy of 80 %.

Conclusions: These findings elucidate on the differences in salivary microbiome compositions between type 2 diabetic and non-diabetic populations, and the diagnostic model provides a promising approach for the noninvasive auxiliary diagnosis of diabetes mellitus.

Keywords: Diagnostic model; Oral microbiome; Salivary microbiome; Type 2 diabetes mellitus.

PubMed Disclaimer

Similar articles

Cited by

Substances

Supplementary concepts

LinkOut - more resources