Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 30;29(1):61.
doi: 10.1186/s13049-021-00879-1.

Severe traumatic brain injury and hypotension is a frequent and lethal combination in multiple trauma patients in mountain areas - an analysis of the prospective international Alpine Trauma Registry

Collaborators, Affiliations

Severe traumatic brain injury and hypotension is a frequent and lethal combination in multiple trauma patients in mountain areas - an analysis of the prospective international Alpine Trauma Registry

Simon Rauch et al. Scand J Trauma Resusc Emerg Med. .

Abstract

Background: Hypotension is associated with worse outcome in patients with traumatic brain injury (TBI) and maintaining a systolic blood pressure (SBP) ≥110 mmHg is recommended. The aim of this study was to assess the incidence of TBI in patients suffering multiple trauma in mountain areas; to describe associated factors, treatment and outcome compared to non-hypotensive patients with TBI and patients without TBI; and to evaluate pre-hospital variables to predict admission hypotension.

Methods: Data from the prospective International Alpine Trauma Registry including mountain multiple trauma patients (ISS ≥ 16) collected between 2010 and 2019 were analysed. Patients were divided into three groups: 1) TBI with hypotension, 2) TBI without hypotension and 3) no TBI. TBI was defined as Abbreviated Injury Scale (AIS) of the head/neck ≥3 and hypotension as SBP < 110 mmHg on hospital arrival.

Results: A total of 287 patients were included. Fifty (17%) had TBI and hypotension, 92 (32%) suffered TBI without hypotension and 145 (51%) patients did not have TBI. Patients in group 1 were more severely injured (mean ISS 43.1 ± 17.4 vs 33.3 ± 15.3 vs 26.2 ± 18.1 for group 1 vs 2 vs 3, respectively, p < 0.001). Mean SBP on hospital arrival was 83.1 ± 12.9 vs 132.5 ± 19.4 vs 119.4 ± 25.8 mmHg (p < 0.001) despite patients in group 1 received more fluids. Patients in group 1 had higher INR, lower haemoglobin and lower base excess (p < 0.001). More than one third of patients in group 1 and 2 were hypothermic (body temperature < 35 °C) on hospital arrival while the rate of admission hypothermia was low in patients without TBI (41% vs 35% vs 21%, for group 1 vs 2 vs 3, p = 0.029). The rate of hypothermia on hospital arrival was different between the groups (p = 0.029). Patients in group 1 had the highest mortality (24% vs 10% vs 1%, p < 0.001).

Conclusion: Multiple trauma in the mountains goes along with severe TBI in almost 50%. One third of patients with TBI is hypotensive on hospital arrival and this is associated with a worse outcome. No single variable or set of variables easily obtainable at scene was able to predict admission hypotension in TBI patients.

Keywords: Hypotension; Mountain rescue; Shock; Trauma; Traumatic brain injury.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Systolic blood pressure (SBP) change from pre-hospital to on hospital arrival, subdivided by the three groups. Tests performed were paired samples t-tests. Error bars represent standard deviation. TBI, traumatic brain injury
Fig. 2
Fig. 2
Classification tree to predict traumatic brain injury (TBI) with and without hypotension and no TBI. AIS, Abbreviated Injury Scale; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; SBP, systolic blood pressure

References

    1. Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–83. 10.1016/S2468-2667(16)30017-2. - PubMed
    1. Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80(1):6–15. 10.1227/NEU.0000000000001432. - PubMed
    1. Barton CW, Hemphill JC, Morabito D, Manley G. A novel method of evaluating the impact of secondary brain insults on functional outcomes in traumatic brain-injured patients. Acad Emerg Med. 2005;12(1):1–6. 10.1197/j.aem.2004.08.043. - PubMed
    1. Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136(10):1118–23. 10.1001/archsurg.136.10.1118. - PubMed
    1. Krishnamoorthy V, Vavilala MS, Mills B, Rowhani-Rahbar A. Demographic and clinical risk factors associated with hospital mortality after isolated severe traumatic brain injury: a cohort study. J Intensive Care. 2015;3(1):46. 10.1186/s40560-015-0113-4. - PMC - PubMed

MeSH terms