Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance
- PMID: 33931446
- PMCID: PMC8087398
- DOI: 10.1126/sciadv.abe7359
Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance
Abstract
Recent findings indicate that mitochondrial respiration regulates blood endothelial cell proliferation; however, its role in differentiating lymphatic endothelial cells (LECs) is unknown. We hypothesized that mitochondria could work as a sensor of LECs' metabolic specific needs by determining their functional requirements according to their differentiation status and local tissue microenvironment. Accordingly, we conditionally deleted the QPC subunit of mitochondrial complex III in differentiating LECs of mouse embryos. Unexpectedly, mutant mice were devoid of a lymphatic vasculature by mid-gestation, a consequence of the specific down-regulation of main LEC fate regulators, particularly Vegfr3, leading to the loss of LEC fate. Mechanistically, this is a result of reduced H3K4me3 and H3K27ac in the genomic locus of key LEC fate controllers (e.g., Vegfr3 and Prox1). Our findings indicate that by sensing the LEC differentiation status and microenvironmental metabolic conditions, mitochondrial complex III regulates the critical Prox1-Vegfr3 feedback loop and, therefore, LEC fate specification and maintenance.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures









Similar articles
-
The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors.Genes Dev. 2014 Oct 1;28(19):2175-87. doi: 10.1101/gad.216226.113. Genes Dev. 2014. PMID: 25274728 Free PMC article.
-
Single-cell analysis of lymphatic endothelial cell fate specification and differentiation during zebrafish development.EMBO J. 2023 Jun 1;42(11):e112590. doi: 10.15252/embj.2022112590. Epub 2023 Mar 13. EMBO J. 2023. PMID: 36912146 Free PMC article.
-
Migration of lymphatic endothelial cells and lymphatic vascular development in the craniofacial region of embryonic mice.Int J Dev Biol. 2018;62(4-5):293-301. doi: 10.1387/ijdb.170218yt. Int J Dev Biol. 2018. PMID: 29877568
-
Pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic metastasis.Clin Chim Acta. 2016 Oct 1;461:165-71. doi: 10.1016/j.cca.2016.08.008. Epub 2016 Aug 12. Clin Chim Acta. 2016. PMID: 27527412 Review.
-
Key molecules in lymphatic development, function, and identification.Ann Anat. 2018 Sep;219:25-34. doi: 10.1016/j.aanat.2018.05.003. Epub 2018 May 26. Ann Anat. 2018. PMID: 29842991 Review.
Cited by
-
Mechanical forces in lymphatic vessel development: Focus on transcriptional regulation.Front Physiol. 2022 Nov 10;13:1066460. doi: 10.3389/fphys.2022.1066460. eCollection 2022. Front Physiol. 2022. PMID: 36439271 Free PMC article. Review.
-
Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis.Theranostics. 2024 Jan 1;14(1):265-282. doi: 10.7150/thno.90940. eCollection 2024. Theranostics. 2024. PMID: 38164153 Free PMC article. Review.
-
Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis.Nat Commun. 2022 May 19;13(1):2760. doi: 10.1038/s41467-022-30490-6. Nat Commun. 2022. PMID: 35589749 Free PMC article.
-
Conjugated Bile Acids Promote Lymphangiogenesis by Modulation of the Reactive Oxygen Species-p90RSK-Vascular Endothelial Growth Factor Receptor 3 Pathway.Cells. 2023 Feb 6;12(4):526. doi: 10.3390/cells12040526. Cells. 2023. PMID: 36831193 Free PMC article.
-
Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth.Int J Mol Sci. 2022 Jun 28;23(13):7192. doi: 10.3390/ijms23137192. Int J Mol Sci. 2022. PMID: 35806196 Free PMC article.
References
-
- Wigle J. T., Oliver G., Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999). - PubMed
-
- Karkkainen M. J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T. V., Jeltsch M., Jackson D. G., Talikka M., Rauvala H., Betsholtz C., Alitalo K., Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004). - PubMed
-
- Zhang L., Zhou F., Han W., Shen B., Luo J., Shibuya M., He Y., VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 20, 1319–1331 (2010). - PubMed
-
- Srinivasan R. S., Escobedo N., Yang Y., Interiano A., Dillard M. E., Finkelstein D., Mukatira S., Gil H. J., Nurmi H., Alitalo K., Oliver G., The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28, 2175–2187 (2014). - PMC - PubMed
-
- De Bock K., Georgiadou M., Schoors S., Kuchnio A., Wong B. W., Cantelmo A. R., Quaegebeur A., Ghesquiere B., Cauwenberghs S., Eelen G., Phng L. K., Betz I., Tembuyser B., Brepoels K., Welti J., Geudens I., Segura I., Cruys B., Bifari F., Decimo I., Blanco R., Wyns S., Vangindertael J., Rocha S., Collins R. T., Munck S., Daelemans D., Imamura H., Devlieger R., Rider M., Van Veldhoven P. P., Schuit F., Bartrons R., Hofkens J., Fraisl P., Telang S., Deberardinis R. J., Schoonjans L., Vinckier S., Chesney J., Gerhardt H., Dewerchin M., Carmeliet P., Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013). - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous