Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov;23(11):1891-1902.
doi: 10.1002/ejhf.2210. Epub 2021 Jul 12.

Heart failure with preserved ejection fraction according to the HFA-PEFF score in COVID-19 patients: clinical correlates and echocardiographic findings

Affiliations

Heart failure with preserved ejection fraction according to the HFA-PEFF score in COVID-19 patients: clinical correlates and echocardiographic findings

Sara Hadzibegovic et al. Eur J Heart Fail. 2021 Nov.

Abstract

Aims: Viral-induced cardiac inflammation can induce heart failure with preserved ejection fraction (HFpEF)-like syndromes. COVID-19 can lead to myocardial damage and vascular injury. We hypothesised that COVID-19 patients frequently develop a HFpEF-like syndrome, and designed this study to explore this.

Methods and results: Cardiac function was assessed in 64 consecutive, hospitalized, and clinically stable COVID-19 patients from April-November 2020 with left ventricular ejection fraction (LVEF) ≥50% (age 56 ± 19 years, females: 31%, severe COVID-19 disease: 69%). To investigate likelihood of HFpEF presence, we used the HFA-PEFF score. A low (0-1 points), intermediate (2-4 points), and high (5-6 points) HFA-PEFF score was observed in 42%, 33%, and 25% of patients, respectively. In comparison, 64 subjects of similar age, sex, and comorbidity status without COVID-19 showed these scores in 30%, 66%, and 4%, respectively (between groups: P = 0.0002). High HFA-PEFF scores were more frequent in COVID-19 patients than controls (25% vs. 4%, P = 0.001). In COVID-19 patients, the HFA-PEFF score significantly correlated with age, estimated glomerular filtration rate, high-sensitivity troponin T (hsTnT), haemoglobin, QTc interval, LVEF, mitral E/A ratio, and H2 FPEF score (all P < 0.05). In multivariate, ordinal regression analyses, higher age and hsTnT were significant predictors of increased HFA-PEFF scores. Patients with myocardial injury (hsTnT ≥14 ng/L: 31%) vs. patients without myocardial injury, showed higher HFA-PEFF scores [median 5 (interquartile range 3-6) vs. 1 (0-3), P < 0.001] and more often showed left ventricular diastolic dysfunction (75% vs. 27%, P < 0.001).

Conclusion: Hospitalized COVID-19 patients frequently show high likelihood of presence of HFpEF that is associated with cardiac structural and functional alterations, and myocardial injury. Detailed cardiac assessments including echocardiographic determination of left ventricular diastolic function and biomarkers should become routine in the care of hospitalized COVID-19 patients.

Keywords: COVID-19; Diastolic dysfunction; HFA-PEFF; High-sensitivity troponin T; NT-proBNP.

PubMed Disclaimer

Figures

Figure 1
Figure 1
HFA‐PEFF score distribution in COVID‐19 patients and controls. Comparing the HFA‐PEFF scores in the categories low, intermediate and high (low/intermediate and high) between COVID‐19 patients and controls results in P = 0.0002 (P = 0.001).
Figure 2
Figure 2
Scatter plot of the HFA‐PEFF score vs. high‐sensitivity troponin T (hsTnT) and age.
Figure 3
Figure 3
Receiver operating characteristic (ROC) curves for high‐sensitivity (hs) troponin T and age for predicting a high HFA‐PEFF score (5–6 points).

Comment in

References

    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid‐19 . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;282:1708–1720. - PMC - PubMed
    1. Bromage DI, Cannata A, Rind IA, Gregorio C, Piper S, Shah AM, McDonagh TA. The impact of COVID‐19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic. Eur J Heart Fail 2020;22:978–984. - PMC - PubMed
    1. Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, Rabbani L, Brodie D, Jain SS, Kirtane AJ, Masoumi A, Takeda K, Kumaraiah D, Burkhoff D, Leon M, Schwartz A, Uriel N, Sayer G. The variety of cardiovascular presentations of COVID‐19. Circulation 2020;141:1930–1936. - PMC - PubMed
    1. Inciardi RM, Adamo M, Lupi L, Cani DS, Di Pasquale M, Tomasoni D, Italia L, Zaccone G, Tedino C, Fabbricatore D, Curnis A, Faggiano P, Gorga E, Lombardi CM, Milesi G, Vizzardi E, Volpini M, Nodari S, Specchia C, Maroldi R, Bezzi M, Metra M. Characteristics and outcomes of patients hospitalized for COVID‐19 and cardiac disease in Northern Italy. Eur Heart J 2020;41:1821–1829. - PMC - PubMed
    1. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846–848. - PMC - PubMed

Publication types