The Crystal Structure of the Ca2+-ATPase 1 from Listeria monocytogenes reveals a Pump Primed for Dephosphorylation
- PMID: 33933469
- DOI: 10.1016/j.jmb.2021.167015
The Crystal Structure of the Ca2+-ATPase 1 from Listeria monocytogenes reveals a Pump Primed for Dephosphorylation
Abstract
Many bacteria export intracellular calcium using active transporters homologous to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Here we present three crystal structures of Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3- mimicking a phosphoenzyme state reveal a closed state, which is intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. It suggests that LMCA1 in the E2P state is pre-organized for dephosphorylation upon Ca2+ release, consistent with the rapid dephosphorylation observed in single-molecule studies. An arginine side-chain occupies the position equivalent to calcium binding site I in SERCA, leaving a single Ca2+ binding site in LMCA1, corresponding to SERCA site II. Observing no putative transport pathways dedicated to protons, we infer a direct proton counter transport through the Ca2+ exchange pathways. The LMCA1 structures provide insight into the evolutionary divergence and conserved features of this important class of ion transporters.
Keywords: Ca(2+)-ATPase LMCA1; Listeria; P-type ATPase; calcium; membrane protein crystallography.
Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous