Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun:292:102419.
doi: 10.1016/j.cis.2021.102419. Epub 2021 Apr 16.

Thermoplastic bio-nanocomposites: From measurement of fundamental properties to practical application

Affiliations
Free article
Review

Thermoplastic bio-nanocomposites: From measurement of fundamental properties to practical application

Ivanna Colijn et al. Adv Colloid Interface Sci. 2021 Jun.
Free article

Abstract

Although the discovery of plastic has revolutionized materials used in many industries and by consumers, their non-biodegradable nature has led to one of the greatest problems of our times: plastic waste in the environment. Bioplastics which are biobased and biodegradable, have been suggested as alternatives for their fossil based counterparts, but their properties often do not meet the requirements that standard plastics would, and are in clear need of improvement. One way to do so is by the addition of nanoparticles which, when homogeneously dispersed, have been reported to result in great improvements. However, in practice, homogenous distribution of nanoparticles is not that trivial due to their tendency to aggregate, also after addition to the polymer matrix. Although theoretical frameworks to prevent this process are available, we feel that the options explored in practice are often rather trial and error in nature. For that reason, we review the theories available, aiming to facilitate the design of the nanocomposites for a sustainable future. We first discuss thermodynamic frameworks which revolve around nanoparticle aggregation. To minimize nanoparticle aggregation, the nanoparticle and polymer can be selected in such a way that they have similar polar and dispersive surface energies. The second part is dedicated to nanocomposite processing, where kinetic effects act on the nanocomposite material therewith influencing its final morphology, although it is good to point out that other factors such as reaggregation also affect the final nanocomposite morphology. The third section is dedicated to how nanoparticles affect the polymer matrix to which they are added. We describe how interactions at an atomic scale, result in the formation of an interphasial region which ultimately leads to changed bulk material properties. From these three sections, we conclude that three parameters are often overlooked when designing nanocomposites, namely the surface energies of the nanoparticles and polymers, the aggregation bond energy or strength, and the interphase region. Therefore, in the fourth section we provide an overview of techniques to identify these three parameters. We finish with a summery and outlook for the design of bio nanocomposites, where we bring all insights from the previous four sections together.

Keywords: Aggregation strength; Biodegradable plastics; Interphase region; Nanocomposites; Nanoparticles; Surface energy.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources