Characterization of a lytic EBP bacteriophage with large size genome against Enterobacter cloacae
- PMID: 33950561
- DOI: 10.1111/apm.13138
Characterization of a lytic EBP bacteriophage with large size genome against Enterobacter cloacae
Abstract
Enterobacter cloacae (E. cloacae) is an emerging nosocomial pathogen that had acquired antibiotic resistance against multiple classes of antibiotics. The current study was aimed to isolate and characterize lytic bacteriophage against E. cloacae. The bacteriophage EBP was isolated from a sewage water sample using E. cloacae as a host strain by double-layer agar technique. EBP was found stabile at a wide range of temperatures (25, 37, 60, and 80°C) and pH (5, 6, 7, 8, and 9) with antibacterial activity up to 24 h of infection. The latent period of EBP was 20 min with a burst size of 252 phages per cell. It showed a narrow host range and infected 12/21 (57%) isolates of E. cloacae tested. It has helical symmetry with a head size of 105 and 120 nm long tail with contractile sheath. The EBP has 179.1 kb long double-stranded DNA genome with 44.8% GC content. Majority of identified ORFs (187/281) were encoding putative proteins with unknown function. Necessary replication enzymes, structural proteins, and lytic enzymes were detected in the genome of EBP. Phylogenetic analysis revealed that EBP closely resembles with Coronobacter phage vB_CsaM_IeN, vB_CsaM_IeE, vB_CsaM_IeB, and Citrobacter phage Margaery. Based on electron microscopy and molecular characterization, EBP was classified as a Myoviridae phage.
Keywords: Enterobacter cloacae; Bacteriophage; bacteriophage characterization; genome analysis; phage therapy.
© 2021 Scandinavian Societies for Medical Microbiology and Pathology.
References
REFERENCES
-
- Fraser LS. Enterobacter infections. eMedicine. Medscape; 2008 [updated Jun 18, 2019; cited 2021 Jan 3. ]; Available from: https://emedicine.medscape.com/article/216845-overview
-
- Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-75.
-
- Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol. 2010;11(1):69-86.
-
- Stoesser N, Sheppard AE, Shakya M, Sthapit B, Thorson S, Giess A, et al. Dynamics of MDR Enterobacter cloacae outbreaks in a neonatal unit in Nepal: insights using wider sampling frames and next-generation sequencing. J Antimicrob Chemother. 2015;70(4):1008-15.
-
- Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol. 2019;10:539.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources