Hybrid bilayer membranes on metallurgical polished aluminum
- PMID: 33958658
- PMCID: PMC8102548
- DOI: 10.1038/s41598-021-89150-2
Hybrid bilayer membranes on metallurgical polished aluminum
Abstract
In this work we describe the functionalization of metallurgically polished aluminum surfaces yielding biomimetic electrodes suitable for probing protein/phospholipid interactions. The functionalization involves two simple steps: silanization of the aluminum and subsequent fusion of multilamellar vesicles which leads to the formation of a hybrid bilayer lipid membrane (hBLM). The vesicle fusion was followed in real-time by fast Fourier transform electrochemical impedance spectroscopy (FFT EIS). The impedance-derived complex capacitance of the hBLMs was approximately 0.61 µF cm-2, a value typical for intact phospholipid bilayers. We found that the hBLMs can be readily disrupted if exposed to > 400 nM solutions of the pore-forming peptide melittin. However, the presence of cholesterol at 40% (mol) in hBLMs exhibited an inhibitory effect on the membrane-damaging capacity of the peptide. The melittin-membrane interaction was concentration dependent decreasing with concentration. The hBLMs on Al surface can be regenerated multiple times, retaining their dielectric and functional properties essentially intact.
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Mixed hybrid bilayer lipid membranes on mechanically polished titanium surface.Biochim Biophys Acta Biomembr. 2020 Jun 1;1862(6):183232. doi: 10.1016/j.bbamem.2020.183232. Epub 2020 Feb 28. Biochim Biophys Acta Biomembr. 2020. PMID: 32119863
-
Formation of hybrid bilayers on silanized thin-film Ti electrode.Chem Phys Lipids. 2017 Jan;202:62-68. doi: 10.1016/j.chemphyslip.2016.12.001. Epub 2016 Dec 10. Chem Phys Lipids. 2017. PMID: 27964891
-
Electroporation of a hybrid bilayer membrane by scanning electrochemical microscope.Bioelectrochemistry. 2020 Dec;136:107617. doi: 10.1016/j.bioelechem.2020.107617. Epub 2020 Jul 21. Bioelectrochemistry. 2020. PMID: 32736329
-
Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles.Biochim Biophys Acta Biomembr. 2017 May;1859(5):669-678. doi: 10.1016/j.bbamem.2017.01.015. Epub 2017 Jan 12. Biochim Biophys Acta Biomembr. 2017. PMID: 28088448
-
Structure and functional properties of diacylglycerols in membranes.Prog Lipid Res. 1999 Jan;38(1):1-48. doi: 10.1016/s0163-7827(98)00021-6. Prog Lipid Res. 1999. PMID: 10396601 Review.
Cited by
-
Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules.Nanomaterials (Basel). 2022 Mar 30;12(7):1153. doi: 10.3390/nano12071153. Nanomaterials (Basel). 2022. PMID: 35407271 Free PMC article.
-
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3. Med Oncol. 2025. PMID: 40768059 Free PMC article. Review.
-
Hybrid bilayer membranes as platforms for biomimicry and catalysis.Nat Rev Chem. 2022 Dec;6(12):862-880. doi: 10.1038/s41570-022-00433-2. Epub 2022 Oct 28. Nat Rev Chem. 2022. PMID: 37117701 Review.
References
-
- Li S, Cao C, Yang J, Long Y-T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem. 2019;6(1):126–129. doi: 10.1002/celc.201800288. - DOI
-
- Krishna G, Schulte J, Cornell BA, Pace RJ, Osman PD. Tethered bilayer membranes containing ionic reservoirs: Selectivity and conductance. Langmuir. 2003;19(6):2294–2305. doi: 10.1021/la026238d. - DOI
-
- Xiao H, Hong D, Zhu T, Liu S, Li G. Electrochemical sensing of the ion-channel formation of OmpF. J. Appl. Electrochem. 2009;39(8):1163–1167. doi: 10.1007/s10800-009-9778-5. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources