Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 18;12(4):214-222.
doi: 10.5312/wjo.v12.i4.214.

Osseointegration of porous titanium and tantalum implants in ovariectomized rabbits: A biomechanical study

Affiliations

Osseointegration of porous titanium and tantalum implants in ovariectomized rabbits: A biomechanical study

Stanislav Bondarenko et al. World J Orthop. .

Abstract

Background: Today, biological fixation of uncemented press-fit acetabular components plays an important role in total hip arthroplasty. Long-term stable fixation of these implants depends on the osseointegration of the acetabular cup bone tissue into the acetabular cup implant, and their ability to withstand functional loads.

Aim: To compare the strength of bone-implant osseointegration of four types of porous metal implants in normal and osteoporotic bone in rabbits.

Methods: The study was performed in 50 female California rabbits divided into non-ovariectomized (non-OVX) and ovariectomized groups (OVX) at 6 mo of age. Rabbits were sacrificed 8 wk after the implantation of four biomaterials [TTM, CONCELOC, Zimmer Biomet's Trabecular Metal (TANTALUM), and ATLANT] in a 5-mm diameter defect created in the left femur. A biomechanical evaluation of the femur was carried out by testing implant breakout force. The force was gradually increased until complete detachment of the implant from the bone occurred.

Results: The breakout force needed for implant detachment was significantly higher in the non-OVX group, compared with the OVX group for all implants (TANTALUM, 194.7 ± 6.1 N vs 181.3 ± 2.8 N; P = 0.005; CONCELOC, 190.8 ± 3.6 N vs 180.9 ± 6.6 N; P = 0.019; TTM, 186.3 ± 1.8 N vs 172.0 N ± 11.0 N; P = 0.043; and ATLANT, 104.9 ± 7.0 N vs 78.9 N ± 4.5 N; P = 0.001). In the OVX group, The breakout forces in TANTALUM, TTM, and CONCELOC did not differ significantly (P = 0.066). The breakout force for ATLANT in the OVX group was lower by a factor of 2.3 compared with TANTALUM and CONCELOC, and by 2.2 compared with TTM (P = 0.001). In the non-OVX group, the breakout force for ATLANT was significantly different from all other implants, with a reduction in fixation strength by a factor of 1.9 (P = 0.001).

Conclusion: TANTALUM, TTM, and CONCELOC had equal bone-implant osseointegration in healthy and in osteoporotic bone. ATLANT had significantly decreased osseointegration (P = 0.001) in healthy and in osteoporotic bone.

Keywords: Animals; Bone-implant interface; Femur; Osteoporosis; Tantalum; Titanium.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: Bondarenko S, Filipenko V, Karpinsky M, Karpinska O, Ivanov G, Maltseva V, and Badnaoui AA declare that they have no conflict of interest. Schwarzkopf R has potential competing interests; he is a paid consultant of Smith & Nephew, Memphis, TN, United States.

Figures

Figure 1
Figure 1
Scheme of biomechanical testing and biomechanical testing. A: The geometric dimension of the implants; B: Rabbit femur with implant on the stand during testing.
Figure 2
Figure 2
Х-ray images of rabbits after implanted CONCELOC material (arrow) in the proximal femur. А: Non-ovariectomized (non-OVX) rabbit after surgery; B: Non-OVX rabbit at 8 wk after surgery; C: Ovariectomized (OVX) rabbit after surgery; D: OVX rabbit at 8 wk after surgery.
Figure 3
Figure 3
Evaluation of the cortical thickness index of the proximal femur of rabbit with "X-Rays" software (Kharkiv National University of Radioelectronics, Ukraine) 3 mo after ovariectomy.
Figure 4
Figure 4
Device for recording breakout force with a strain gauge.
Figure 5
Figure 5
Results of breakout force testing of four types of porous materials in ovariectomized (OVX, n = 20) and healthy rabbits (non-OVX, n = 20) 8 wk after implantation. А: Unpaired t-test: Analysis of the effect of osteoporosis (OVX group) on the bone-implant strength and osseointegration for the same type of implant; B: ANOVA with post-hoc Duncan test evaluation of the effect of the implant material on bone-implant strength and osseointegration in ovariectomized and non-ovariectomized rabbits. aP < 0.05; bP < 0.01; cP < 0.001. ns: not significant; non-OVX: non-ovariectomized; OVX: ovariectomized.

References

    1. Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O'Keefe TJ, Stulberg SD, Sutherland CJ. Radiographic evaluation of a monoblock acetabular component: a multicenter study with 2- to 5-year results. J Arthroplasty. 2005;20:369–378. - PubMed
    1. Yuan BJ, Lewallen DG, Hanssen AD. Porous metal acetabular components have a low rate of mechanical failure in THA after operatively treated acetabular fracture. Clin Orthop Relat Res. 2015;473:536–542. - PMC - PubMed
    1. Karachalios T. Bone-implant interface in orthopedic surgery: basic science to clinical applications. London: Springer-Verlag, 2014: 13-26.
    1. Naziri Q, Issa K, Pivec R, Harwin SF, Delanois RE, Mont MA. Excellent results of primary THA using a highly porous titanium cup. Orthopedics. 2013;36:e390–e394. - PubMed
    1. Marin E, Fedrizzi L, Zagra L. Porous metallic structures for orthopaedic applications: a short review of materials and technologies. Eur Orthop Traumatol. 2010;1:103109.

LinkOut - more resources