Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 15:198:117168.
doi: 10.1016/j.watres.2021.117168. Epub 2021 Apr 21.

Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments - A critical review

Affiliations
Review

Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments - A critical review

Rui Hou et al. Water Res. .

Abstract

Novel brominated flame retardants (NBFRs), which have been developed as replacements for legacy flame retardants such as polybrominated diphenyl ethers (PBDEs), are a class of alternative flame retardants with emerging and widespread applications. The ubiquitous occurrence of NBFRs in the aquatic environments and the potential adverse effects on aquatic organisms have initiated intense global concerns. The present article, therefore, identifies and analyzes the current state of knowledge on the occurrence, bioaccumulation, fates, and environmental and health risks of NBFRs in aquatic environments. The key findings from this review are that (1) the distribution of NBFRs are source-dependent in the global aquatic environments, and several NBFRs have been reported at higher concentrations than that of the legacy flame retardants; (2) high bioaccumulative properties have been found for all of the discussed NBFRs due to their strong hydrophobic characteristics and weak metabolic rates; (3) the limited information available suggests that NBFRs are resistant to biotic and abiotic degradation processes and that sorption to sludge and sediments are the main fate of NBFRs in the aquatic environments; (4) the results of ecological risk assessments have indicated the potential risks of NBFRs and have suggested that source areas are the most vulnerable environmental compartments. Knowledge gaps and perspectives for future research regarding the monitoring, toxicokinetics, transformation processes, and development of ecological risk assessments of NBFRs in aquatic environments are proposed.

Keywords: Aquatic environments; Bioaccumulation; Novel brominated flame retardants (NBFRs); Persistence; Risk assessment.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.