Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 28;379(2200):20200197.
doi: 10.1098/rsta.2020.0197. Epub 2021 May 10.

Synergistic multi-contrast cardiac magnetic resonance image reconstruction

Affiliations
Review

Synergistic multi-contrast cardiac magnetic resonance image reconstruction

Haikun Qi et al. Philos Trans A Math Phys Eng Sci. .

Abstract

Cardiac magnetic resonance imaging (CMR) is an important tool for the non-invasive diagnosis of a variety of cardiovascular diseases. Parametric mapping with multi-contrast CMR is able to quantify tissue alterations in myocardial disease and promises to improve patient care. However, magnetic resonance imaging is an inherently slow imaging modality, resulting in long acquisition times for parametric mapping which acquires a series of cardiac images with different contrasts for signal fitting or dictionary matching. Furthermore, extra efforts to deal with respiratory and cardiac motion by triggering and gating further increase the scan time. Several techniques have been developed to speed up CMR acquisitions, which usually acquire less data than that required by the Nyquist-Shannon sampling theorem, followed by regularized reconstruction to mitigate undersampling artefacts. Recent advances in CMR parametric mapping speed up CMR by synergistically exploiting spatial-temporal and contrast redundancies. In this article, we will review the recent developments in multi-contrast CMR image reconstruction for parametric mapping with special focus on low-rank and model-based reconstructions. Deep learning-based multi-contrast reconstruction has recently been proposed in other magnetic resonance applications. These developments will be covered to introduce the general methodology. Current technical limitations and potential future directions are discussed. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.

Keywords: accelerated imaging; cardiac magnetic resonance imaging; multi-contrast imaging; parametric mapping; undersampled reconstruction.

PubMed Disclaimer

MeSH terms

LinkOut - more resources