Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 23:12:642822.
doi: 10.3389/fphar.2021.642822. eCollection 2021.

Pleiotropic Effects of Tetracyclines in the Management of COVID-19: Emerging Perspectives

Affiliations
Review

Pleiotropic Effects of Tetracyclines in the Management of COVID-19: Emerging Perspectives

Hayder M Al-Kuraishy et al. Front Pharmacol. .

Abstract

Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 15% of severe cases require an intensive care unit (ICU) admission and mechanical ventilation due to development of acute respiratory distress syndrome (ARDS). Tetracyclines (TCs) are a group of bacteriostatic antibiotics, like tetracycline, minocycline, and doxycycline, effective against aerobic and anaerobic bacteria as well as Gram-positive and Gram-negative bacteria. Based on available evidences, TCs may be effective against coronaviruses and thus useful to treat COVID-19. Thus, this review aims to provide a brief overview on the uses of TCs for COVID-19 management. SARS-CoV-2 and other coronaviruses depend mainly on the matrix metalloproteinases (MMPs) for their proliferation, cell adhesion, and infiltration. The anti-inflammatory mechanisms of TCs are linked to different pathways. Briefly, TCs inhibit mitochondrial cytochrome c and caspase pathway with improvement of lymphopenia in early COVID-19. Specifically, minocycline is effective in reducing COVID-19-related complications, through attenuation of cytokine storm as apparent by reduction of interleukin (IL)-6, IL-1, and tumor necrosis factor (TNF)-α. Different clinical trials recommend the replacement of azithromycin by minocycline in the management of COVID-19 patients at high risk due to two main reasons: 1) minocycline does not prolong the QT interval and even inhibits ischemia-induced arrhythmia; 2) minocycline displays synergistic effect with chloroquine against SARS-CoV-2. Taken together, the data presented here show that TCs, mainly doxycycline or minocycline, may be potential partners in COVID-19 management, derived pneumonia, and related complications, such as acute lung injury (ALI) and ARDS.

Keywords: COVID-19; SARS-CoV-2; acute respiratory distress syndrome; coronavirus disease 2019; tetracyclines.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Pleiotropic effects of tetracycline in SARS-CoV-2 infection. Tetracycline has antiviral and anti-inflammatory effects. Antiviral effects of tetracycline are through inhibition of RNA-polymerase and serine protease dependent viral replications, and inhibition of the expression of CD26 and CD147, which are regarded as entry-point for SARS-CoV-2 with subsequent reduction in viral load. Anti-inflammatory effects of tetracycline are through inhibition of matrix metalloproteinases (MMPs), nuclear factor kappa B (NF-κB), Nod-like receptor pyrin 3 (NLRP3) inflammasome, and release of pro-inflammatory cytokines with subsequent attenuation of cytokine storm development. Taken together, both anti-inflammatory and antiviral effects of tetracycline inhibit development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in COVID-19.

References

    1. Al-Kuraishy H. M., Al-Gareeb A. I., Al-Niemi M. S., Al-Buhadily A. K., Al-Harchan N. A., Lugnier C. (2020a). COVID-19 and Phosphodiesterase Enzyme Type 5 Inhibitors. J. Microsc. Ultrastruct. 8 (4), 141–145. 10.4103/JMAU.JMAU_63_20 - DOI - PMC - PubMed
    1. Al-kuraishy H. M., Al-Maiahy T. J., Al-Gareeb A. I., Musa R. A., Ali Z. H. (2020b). COVID-19 Pneumonia in an Iraqi Pregnant Woman With Preterm Delivery. Asian Pac. J. Reprod. 9 (3), 156–158. 10.4103/2305-0500.282984 - DOI
    1. Alam M. M., Mahmud S., Rahman M. M., Simpson J., Aggarwal S., Ahmed Z. (2020). Clinical Outcomes of Early Treatment With Doxycycline for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New York. Cureus 12 (8), e9658. 10.7759/cureus.9658 - DOI - PMC - PubMed
    1. Bharadwaj S., Lee K. E., Dwivedi V. D., Kang S. G. (2020). Computational Insights into Tetracyclines as Inhibitors against SARS-CoV-2 Mpro via Combinatorial Molecular Simulation Calculations. Life Sci. 257, 118080. 10.1016/j.lfs.2020.118080 - DOI - PMC - PubMed
    1. Bhowmik D., Nandi R., Jagadeesan R., Kumar N., Prakash A., Kumar D. (2020). Identification of Potential Inhibitors against SARS-CoV-2 by Targeting Proteins Responsible for Envelope Formation and Virion Assembly Using Docking Based Virtual Screening, and Pharmacokinetics Approaches. Infect. Genet. Evol. 84, 104451. 10.1016/j.meegid.2020.104451 - DOI - PMC - PubMed