Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 28;72(15):5462-5477.
doi: 10.1093/jxb/erab199.

Strigolactones regulate sepal senescence in Arabidopsis

Affiliations

Strigolactones regulate sepal senescence in Arabidopsis

Xi Xu et al. J Exp Bot. .

Abstract

Flower sepals are critical for flower development and vary greatly in life span depending on their function post-pollination. Very little is known about what controls sepal longevity. Using a sepal senescence mutant screen, we identified two Arabidopsis mutants with delayed senescence directly connecting strigolactones with senescence regulation in a novel floral context that hitherto has not been explored. The mutations were in the strigolactone biosynthetic gene MORE AXILLARY GROWTH1 (MAX1) and in the strigolactone receptor gene DWARF14 (AtD14). The mutation in AtD14 changed the catalytic Ser97 to Phe in the enzyme active site, which is the first mutation of its kind in planta. The lesion in MAX1 was in the haem-iron ligand signature of the cytochrome P450 protein, converting the highly conserved Gly469 to Arg, which was shown in a transient expression assay to substantially inhibit the activity of MAX1. The two mutations highlighted the importance of strigolactone activity for driving to completion senescence initiated both developmentally and in response to carbon-limiting stress, as has been found for the more well-known senescence-associated regulators ethylene and abscisic acid. Analysis of transcript abundance in excised inflorescences during an extended night suggested an intricate relationship among sugar starvation, senescence, and strigolactone biosynthesis and signalling.

Keywords: Arabidopsis; AtD14; MAX1; darkness; mutants; sepal senescence; strigolactones; sugar starvation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources