Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 10;21(1):212.
doi: 10.1186/s12876-021-01782-w.

Prevalence of and risk factors for metabolic associated fatty liver disease in an urban population in China: a cross-sectional comparative study

Affiliations

Prevalence of and risk factors for metabolic associated fatty liver disease in an urban population in China: a cross-sectional comparative study

Yu-Ling Chen et al. BMC Gastroenterol. .

Abstract

Background: Metabolic associated fatty liver disease (MAFLD) is a new definition for liver disease associated with known metabolic dysfunction. Based on new diagnostic criteria, we aimed to investigate its prevalence and risk factors in Chinese population.

Methods: We conducted this study in a health examination population who underwent abdominal ultrasonography in China. The diagnosis of MAFLD was based on the new diagnostic criteria. The characteristics of the MAFLD population, as well as the associations between MAFLD and metabolic abnormalities, were explored. Mann-Whitney U test and chi-square test were performed to compare different variables. Binary logistic regression was used to determine the risk factors for MAFLD.

Results: Among 139,170 subjects, the prevalence of MAFLD was 26.1% (males: 35.4%; females: 14.1%). The prevalence based on female menopausal status, that is, premenopausal, perimenopausal, and postmenopausal, was 6.1%, 16.8%, and 30.2%, respectively. In different BMI groups (underweight, normal, overweight and obese), the prevalence was 0.1%, 4.0%, 27.4% and 59.8%, respectively. The proportions of abnormal metabolic features in the MAFLD group were significantly higher than those in the non-MAFLD group, as was the proportion of elevated alanine aminotransferase (ALT) (42.5% vs. 11%, P < 0.001). In nonobese individuals with MAFLD, the proportions of abnormal metabolic features were also all significantly higher than those in nonobese individuals without MAFLD. The prevalence of metabolic syndrome (MS), dyslipidaemia, and hyperuricaemia, respectively, in the MAFLD group (53.2%, 80.0%, and 45.0%) was significantly higher than that in the non-MAFLD group (10.1%, 41.7%, and 16.8%). Logistic regression revealed that age, BMI, waist circumference, ALT, triglycerides, fasting glucose, uric acid and platelet count were associated with MAFLD.

Conclusions: MAFLD is prevalent in China and varies considerably among different age, sex, BMI, and female menopausal status groups. MAFLD is related to metabolic disorders, especially obesity, while metabolic disorders also play important roles in the occurrence of MAFLD in nonobese individuals. MAFLD patients exhibit a high prevalence of MS, dyslipidaemia, hyperuricaemia, and elevated liver enzymes. MAFLD tends to coexist with systemic metabolic disorders, and a deep inner relationship may exist between MAFLD and MS. Metabolic disorders should be considered to improve the management of MAFLD.

Keywords: Metabolic associated fatty liver disease; Metabolic syndrome; Nonalcoholic fatty liver disease; Ultrasonography.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The age-specific prevalence of MAFLD. The age-specific prevalence of MAFLD and its 95% CIs in males, females and total population were calculated
Fig. 2
Fig. 2
The prevalence of MAFLD and dyslipidaemia in females based on menopausal status. The prevalence of MAFLD and dyslipidaemia and its 95% CIs in females with different menopausal status were calculated
Fig. 3
Fig. 3
The prevalence of MAFLD based on BMI groups. The BMI-stratified MAFLD prevalence and its CIs in males, females and total population were calculated
Fig. 4
Fig. 4
Prevalence of MS, dyslipidaemia and hyperuricaemia in individuals with and without MAFLD. The prevalence of MS, dyslipidaemia and hyperuricaemia and its CIs in individuals (total population, males and females) with and without MAFLD were calculated

Similar articles

Cited by

References

    1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. doi: 10.1038/nrgastro.2017.109. - DOI - PubMed
    1. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–1419. doi: 10.1016/S0016-5085(99)70506-8. - DOI - PubMed
    1. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357. doi: 10.1002/hep.29367. - DOI - PubMed
    1. Eslam M, Sanyal AJ, George J. International consensus P: MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999e1991–2014e1991. doi: 10.1053/j.gastro.2019.11.312. - DOI - PubMed
    1. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–209. doi: 10.1016/j.jhep.2020.03.039. - DOI - PubMed