Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 10;13(1):80.
doi: 10.1186/s13073-021-00891-1.

Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH

Collaborators, Affiliations

Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH

Na Zhu et al. Genome Med. .

Erratum in

Abstract

Background: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined.

Methods: To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource - Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD.

Results: Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e-5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development.

Conclusions: Rare variant analysis of a large international consortium identified two new candidate genes-FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.

Keywords: Case-control association testing; De novo variant analysis; Exome sequencing; Genetics; Genome sequencing; Pulmonary arterial hypertension.

PubMed Disclaimer

Conflict of interest statement

CG-J and the Regeneron Genetic Center collaborators are full-time employees of the Regeneron Genetics Center from Regeneron Pharmaceuticals Inc. and receive stock options as part of compensation. Johannes Karten is the full owner of 42Genetics BV. The remaining authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Gene-based association analysis using 1647 European IPAH cases and 18,819 European controls. a Results of a binomial test confined to rare, likely gene damaging (LGD) and predicted deleterious missense (D-Mis) variants or D-Mis only variants in 20,000 protein-coding genes. The control group included 11,101 unaffected SPARK parents and 7718 NFE gnomAD v2.1.1 individuals. Horizontal gray line indicates the Bonferroni-corrected threshold for significance. b Complete list of top association genes (FDR < 0.1)
Fig. 2
Fig. 2
Locations of PAH-associated rare variants within FBLN2 and PDGFD protein structures. a Variants and conserved domains within two-dimensional protein structures. The numbers of variants at each amino acid position is indicated along the y-axes. D-MIS, predicted deleterious missense; LGD, likely gene-disrupting (stopgain, frameshift, splicing). FBLN2: ANATO, anaphylatoxin-like 2; EGF-ca, calcium-binding endothelial growth factor-like 1; EGF, non-calcium-binding EGF domain. PDGFD: CUB, complement subcomponent; PDGF/VEGF, platelet-derived growth factor/vascular endothelial-derived growth factor domain. b FBLN2 residues 858-900: p.(Gly880Val) and p.(Gly889Asp) change the conserved i+2 glycine residues of type II reverse turns within an EGF domain. Residues 981-1011: recurrent p.(Asp982Tyr) changes a residue within the highly conserved DXXE motif/calcium-binding site within an EGF domain. c PDGFD residues 43-180: p.(Asp148Asn) predicted to destroy the Ca++ binding site of the CUB domain. Residues 264-364: p.(Arg295Cys) disrupts a hydrogen bond and p.(Ser309Cys) may create a new disulfide bond in the PDGF/VEGF domain
Fig. 3
Fig. 3
Gene expression patterns of PAH risk genes using murine single-cell RNA-seq data. a Heat map showing fraction of cells with > 0 reads in specific cell types of lung, heart, and aorta for 11 known PAH risk genes and 3 new candidate risk genes (KDR, FBLN2, and PDGFD). L, lung; H, heart; A, aorta. b PCA analysis of gene expression for PAH risk genes and a set of 100 randomly selected genes, overlaid on a plot of all other 16,744 sequenced genes expressed in both human and mouse cells. c Histogram of PC2 values for PAH risk genes and a set of 100 randomly selected genes indicates a right shift for PC2 among PAH risk genes. d Relative rank of PC2 values for PAH risk genes among 16,744 sequenced genes expressed in both human and mouse cells.

Similar articles

  • Whole exome sequencing unravels genetic architecture and its clinical implications in pediatric pulmonary arterial hypertension.
    Jiang DJ, Yang YJ, Wang YZ, Zhang X, Chan WX, Yu TT, Chen H, Zhang H, Yan Y, Fu LJ. Jiang DJ, et al. Int J Cardiol. 2025 Oct 15;437:133515. doi: 10.1016/j.ijcard.2025.133515. Epub 2025 Jun 12. Int J Cardiol. 2025. PMID: 40516660
  • DIAPH1 Variants in Non-East Asian Patients With Sporadic Moyamoya Disease.
    Kundishora AJ, Peters ST, Pinard A, Duran D, Panchagnula S, Barak T, Miyagishima DF, Dong W, Smith H, Ocken J, Dunbar A, Nelson-Williams C, Haider S, Walker RL, Li B, Zhao H, Thumkeo D, Marlier A, Duy PQ, Diab NS, Reeves BC, Robert SM, Sujijantarat N, Stratman AN, Chen YH, Zhao S, Roszko I, Lu Q, Zhang B, Mane S, Castaldi C, López-Giráldez F, Knight JR, Bamshad MJ, Nickerson DA, Geschwind DH, Chen SL, Storm PB, Diluna ML, Matouk CC, Orbach DB, Alper SL, Smith ER, Lifton RP, Gunel M, Milewicz DM, Jin SC, Kahle KT. Kundishora AJ, et al. JAMA Neurol. 2021 Aug 1;78(8):993-1003. doi: 10.1001/jamaneurol.2021.1681. JAMA Neurol. 2021. PMID: 34125151 Free PMC article.
  • A novel SMARCC1 -mutant BAFopathy implicates epigenetic dysregulation of neural progenitors in hydrocephalus.
    Singh AK, Viviano S, Allington G, McGee S, Kiziltug E, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Ma S, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. Singh AK, et al. medRxiv [Preprint]. 2023 Mar 20:2023.03.19.23287455. doi: 10.1101/2023.03.19.23287455. medRxiv. 2023. Update in: Brain. 2024 Apr 4;147(4):1553-1570. doi: 10.1093/brain/awad405. PMID: 36993720 Free PMC article. Updated. Preprint.
  • Phenylalanine Hydroxylase Deficiency.
    Arnold G, Vockley J. Arnold G, et al. 2000 Jan 10 [updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. 2000 Jan 10 [updated 2025 Mar 13]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. PMID: 20301677 Free Books & Documents. Review.
  • Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
    Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Struyf T, et al. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.

Cited by

References

    1. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–D33. doi: 10.1016/j.jacc.2013.10.027. - DOI - PubMed
    1. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176–188. doi: 10.1161/CIRCRESAHA.113.301129. - DOI - PMC - PubMed
    1. Humbert M, Guignabert C, Bonnet S, Dorfmuller P, Klinger JR, Nicolls MR, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1). - PMC - PubMed
    1. Li L, Jick S, Breitenstein S, Hernandez G, Michel A, Vizcaya D. Pulmonary arterial hypertension in the USA: an epidemiological study in a large insured pediatric population. Pulm Circ. 2017;7(1):126–136. doi: 10.1086/690007. - DOI - PMC - PubMed
    1. Swinnen K, Quarck R, Godinas L, Belge C, Delcroix M. Learning from registries in pulmonary arterial hypertension: pitfalls and recommendations. Eur Respir Rev. 2019;28(154). - PMC - PubMed

Publication types

MeSH terms