Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua
- PMID: 3397328
- DOI: 10.1016/0378-5955(88)90031-7
Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua
Abstract
The origin of the frequency selectivity of neurons in the vertebrate auditory periphery is one of the most important questions in auditory research today. In an attempt to delineate the extent to which structures outside the sensory cells play a role in determining peripheral auditory responses, we measured the mechanical displacement of the basilar membrane and the selectivity of nerve fibres at the same location in the bobtail lizard. These data indicate a contribution to frequency selectivity, the tuning of which resembles a high-pass resonant filter characteristic, arising subsequent to the basilar membrane motion. A comparison of these data with the tuning of auditory-nerve fibres originating from papillar areas in other lizard species without a tectorial membrane, suggests that it is the involvement of the tectorial membrane in a mechanical resonance which increases the frequency selectivity.
Similar articles
-
Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae.Science. 1998 Dec 4;282(5395):1882-4. doi: 10.1126/science.282.5395.1882. Science. 1998. PMID: 9836636 Free PMC article.
-
Tectorial membrane: a possible effect on frequency analysis in the cochlea.Science. 1979 May 11;204(4393):639-41. doi: 10.1126/science.432671. Science. 1979. PMID: 432671
-
Neurophysiological evidence for a traveling wave in the amphibian inner ear.Science. 1984 Sep 7;225(4666):1037-9. doi: 10.1126/science.6474164. Science. 1984. PMID: 6474164
-
What have lizard ears taught us about auditory physiology?Hear Res. 2008 Apr;238(1-2):3-11. doi: 10.1016/j.heares.2007.09.011. Epub 2007 Oct 6. Hear Res. 2008. PMID: 17983712 Review.
-
The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.J Acoust Soc Am. 1991 Jul;90(1):136-46. doi: 10.1121/1.401307. J Acoust Soc Am. 1991. PMID: 1880281 Review.
Cited by
-
Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.Biophys J. 2010 Aug 9;99(4):1064-72. doi: 10.1016/j.bpj.2010.06.012. Biophys J. 2010. PMID: 20712989 Free PMC article.
-
In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards.Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2826-31. doi: 10.1073/pnas.041604998. Epub 2001 Feb 13. Proc Natl Acad Sci U S A. 2001. PMID: 11226325 Free PMC article.
-
Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul;194(7):665-83. doi: 10.1007/s00359-008-0338-y. Epub 2008 May 24. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008. PMID: 18500528 Free PMC article.
-
Middle Ear Mechanics in the Barn Owl.J Morphol. 2025 Jan;286(1):e70020. doi: 10.1002/jmor.70020. J Morphol. 2025. PMID: 39754321 Free PMC article.
-
Auditory cellular cooperativity probed via spontaneous otoacoustic emissions.Biophys J. 2025 Apr 15;124(8):1208-1225. doi: 10.1016/j.bpj.2025.02.023. Epub 2025 Mar 3. Biophys J. 2025. PMID: 40040283 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources