Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep;44(9):1975-1988.
doi: 10.1007/s00449-021-02579-7. Epub 2021 May 11.

Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen Xanthomonas oryzae pv. oryzae

Affiliations

Biogenic silver nanoparticles as an antibacterial agent against bacterial leaf blight causing rice phytopathogen Xanthomonas oryzae pv. oryzae

Karunakar Reddy Namburi et al. Bioprocess Biosyst Eng. 2021 Sep.

Abstract

Silver nanoparticles (Ag NP) were produced utilizing leaf extract of rice cultivar Taichung native-1. Various factors like leaf extract, silver nitrate concentrations, and duration of autoclaving were standardized during synthesis. Nanoparticles were analyzed with UV-visible absorption spectroscopy (UV-vis), dynamic light scattering, zeta potential, X-ray diffraction and transmission electron microscopy techniques. The synthesis was noted at 0.4% extract, 0.6 mM silver nitrate, 30 min of autoclaving and NP formation was confirmed from 424 nm peak in UV-vis. NP showed zeta potential of - 27 mV, face-centered cubic (fcc) crystal nature and sized around 16.5 ± 5.9 nm. Biogenic NP synthesized from susceptible rice variety were used as an antibacterial agent against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight (BLB) disease in rice. Antibacterial effect of Ag NP was evaluated using in vitro assays and in vivo efficacy under greenhouse conditions. Results confirmed effective inhibition of Xoo growth and colony formation by Ag NP and found to be the more powerful antibacterial agent. Besides, Ag NP treatment (10 µg/mL) caused an enhancement in seedling vigor index. Pots treated with Ag NP (15 μg/mL) in vivo in greenhouse showed disease severity of 26.6% and disease decrease over control of 49.2%, at a much lower NP concentration than earlier reported studies. Thus, the current report implies using the leaf extract synthesized Ag NP to control and BLB disease management in field conditions.

Keywords: Antibacterial; Bacterial leaf blight; Greenhouse; Leaf extract; Phytopathogen; Rice; Silver nanoparticles; Xanthomonas oryzae pv. oryzae.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6:399–408. https://doi.org/10.1007/s13204-015-0449-z - DOI
    1. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64. https://doi.org/10.1016/j.micres.2016.06.004 - DOI - PubMed
    1. Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64:120–127
    1. Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 101:184–190. https://doi.org/10.1016/j.saa.2012.09.031 - DOI
    1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3 - DOI - PubMed

MeSH terms

Supplementary concepts

LinkOut - more resources