Following replicative DNA synthesis by time-resolved X-ray crystallography
- PMID: 33976175
- PMCID: PMC8113479
- DOI: 10.1038/s41467-021-22937-z
Following replicative DNA synthesis by time-resolved X-ray crystallography
Abstract
The mechanism of DNA synthesis has been inferred from static structures, but the absence of temporal information raises longstanding questions about the order of events in one of life's most central processes. Here we follow the reaction pathway of a replicative DNA polymerase using time-resolved X-ray crystallography to elucidate the order and transition between intermediates. In contrast to the canonical model, the structural changes observed in the time-lapsed images reveal a catalytic cycle in which translocation precedes catalysis. The translocation step appears to follow a push-pull mechanism where the O-O1 loop of the finger subdomain acts as a pawl to facilitate unidirectional movement along the template with conserved tyrosine residues 714 and 719 functioning as tandem gatekeepers of DNA synthesis. The structures capture the precise order of critical events that may be a general feature of enzymatic catalysis among replicative DNA polymerases.
Conflict of interest statement
The authors declare no competing interests.
Figures



Similar articles
-
Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.FEBS J. 2017 Dec;284(23):4051-4065. doi: 10.1111/febs.14290. Epub 2017 Nov 8. FEBS J. 2017. PMID: 28986969
-
Function of a strand-separation pin element in the PriA DNA replication restart helicase.J Biol Chem. 2019 Feb 22;294(8):2801-2814. doi: 10.1074/jbc.RA118.006870. Epub 2018 Dec 28. J Biol Chem. 2019. PMID: 30593500 Free PMC article.
-
Active Site Interactions Impact Phosphoryl Transfer during Replication of Damaged and Undamaged DNA by Escherichia coli DNA Polymerase I.Chem Res Toxicol. 2017 Nov 20;30(11):2033-2043. doi: 10.1021/acs.chemrestox.7b00257. Epub 2017 Oct 25. Chem Res Toxicol. 2017. PMID: 29053918 Free PMC article.
-
The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins.Cell. 1994 Jan 14;76(1):9-15. doi: 10.1016/0092-8674(94)90168-6. Cell. 1994. PMID: 8287483 Review. No abstract available.
-
Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.Crit Rev Biochem Mol Biol. 2006 May-Jun;41(3):179-208. doi: 10.1080/10409230600648751. Crit Rev Biochem Mol Biol. 2006. PMID: 16760017 Review.
Cited by
-
In crystallo observation of three metal ion promoted DNA polymerase misincorporation.Nat Commun. 2022 Apr 29;13(1):2346. doi: 10.1038/s41467-022-30005-3. Nat Commun. 2022. PMID: 35487947 Free PMC article.
-
Observing one-divalent-metal-ion dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo.bioRxiv [Preprint]. 2024 Jul 11:2024.05.02.592236. doi: 10.1101/2024.05.02.592236. bioRxiv. 2024. Update in: Elife. 2024 Aug 14;13:RP99960. doi: 10.7554/eLife.99960. PMID: 38746211 Free PMC article. Updated. Preprint.
-
In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases.Struct Dyn. 2023 Jun 15;10(3):034702. doi: 10.1063/4.0000187. eCollection 2023 May. Struct Dyn. 2023. PMID: 37333512 Free PMC article.
-
New insights into DNA polymerase mechanisms provided by time-lapse crystallography.Curr Opin Struct Biol. 2022 Dec;77:102465. doi: 10.1016/j.sbi.2022.102465. Epub 2022 Sep 26. Curr Opin Struct Biol. 2022. PMID: 36174287 Free PMC article. Review.
-
Observing one-divalent-metal-ion-dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo.Elife. 2024 Aug 14;13:RP99960. doi: 10.7554/eLife.99960. Elife. 2024. PMID: 39141555 Free PMC article.
References
-
- Kornberg, A. & Baker, T. A. DNA replication. 2nd edn, (W. H. Freeman, 1992).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources