CRISPR/Cas systems: opportunities and challenges for crop breeding
- PMID: 33977326
- DOI: 10.1007/s00299-021-02708-2
CRISPR/Cas systems: opportunities and challenges for crop breeding
Abstract
Increasing crop production to meet the demands of a growing population depends largely on crop improvement through new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from genetically modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops, and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also discuss future improvements of CRISPR/Cas systems for crop improvement.
Keywords: Base editing; CRISPR/Cas9; Crop breeding; Genome editing; Molecular characterization; Prime editing.
Similar articles
-
Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.Mol Plant. 2019 Aug 5;12(8):1047-1059. doi: 10.1016/j.molp.2019.06.009. Epub 2019 Jun 28. Mol Plant. 2019. PMID: 31260812 Review.
-
Recent advancements in CRISPR/Cas technology for accelerated crop improvement.Planta. 2022 Apr 23;255(5):109. doi: 10.1007/s00425-022-03894-3. Planta. 2022. PMID: 35460444 Review.
-
CRISPR-Cas applications in agriculture and plant research.Nat Rev Mol Cell Biol. 2025 Jun;26(6):419-441. doi: 10.1038/s41580-025-00834-3. Epub 2025 Mar 7. Nat Rev Mol Cell Biol. 2025. PMID: 40055491 Review.
-
Application of genome editing techniques to regulate gene expression in crops.BMC Plant Biol. 2024 Feb 9;24(1):100. doi: 10.1186/s12870-024-04786-2. BMC Plant Biol. 2024. PMID: 38331711 Free PMC article. Review.
-
Advances in Genome Editing Through Haploid Induction Systems.Int J Mol Sci. 2025 May 16;26(10):4779. doi: 10.3390/ijms26104779. Int J Mol Sci. 2025. PMID: 40429922 Free PMC article. Review.
Cited by
-
Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops.Int J Mol Sci. 2022 Oct 10;23(19):12053. doi: 10.3390/ijms231912053. Int J Mol Sci. 2022. PMID: 36233352 Free PMC article. Review.
-
Editing melon eIF4E associates with virus resistance and male sterility.Plant Biotechnol J. 2022 Oct;20(10):2006-2022. doi: 10.1111/pbi.13885. Epub 2022 Jul 25. Plant Biotechnol J. 2022. PMID: 35778883 Free PMC article.
-
Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms.Plants (Basel). 2021 Jul 29;10(8):1560. doi: 10.3390/plants10081560. Plants (Basel). 2021. PMID: 34451605 Free PMC article. Review.
-
PidTools: Algorithm and web tools for crop pedigree identification analysis.Comput Struct Biotechnol J. 2024 Jul 5;23:2883-2891. doi: 10.1016/j.csbj.2024.07.004. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39108678 Free PMC article.
-
Drought stress in Lens culinaris: effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches.Physiol Mol Biol Plants. 2024 Feb;30(2):227-247. doi: 10.1007/s12298-024-01417-w. Epub 2024 Feb 27. Physiol Mol Biol Plants. 2024. PMID: 38623164 Free PMC article. Review.
References
-
- Ainley WM, Dent SL, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134. https://doi.org/10.1111/pbi.12107 - DOI - PubMed
-
- Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM (2020) Fusion of the Cas9 endonuclease and the VirD2relaxase facilitates homology-directed repair forprecise genome engineering in rice. Commun Biol 3(1):44. https://doi.org/10.1038/s42003-020-0768 - DOI - PubMed - PMC
-
- Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1. https://doi.org/10.1186/s13059-017-1381-1 - DOI - PubMed - PMC
-
- Anzalone AZ, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. https://doi.org/10.1038/s41586-019-1711-4 - DOI - PubMed - PMC
-
- Anzalone AZ, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844. https://doi.org/10.1038/s41587-020-0561-9 - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources