Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:2262:323-334.
doi: 10.1007/978-1-0716-1190-6_20.

A Facile Method to Engineer Mutant Kras Alleles in an Isogenic Cell Background

Affiliations

A Facile Method to Engineer Mutant Kras Alleles in an Isogenic Cell Background

Konstantin Budagyan et al. Methods Mol Biol. 2021.

Abstract

Oncogenic KRAS mutations are common in colorectal cancer (CRC), found in ~50% of tumors, and are associated with poor prognosis and resistance to therapy. There is substantial diversity of KRAS mutations observed in CRC. Importantly, emerging clinical and experimental analysis of relatively common KRAS mutations at amino acids G12, G13, A146, and Q61 suggest that each mutation differently influences the clinical properties of a disease and response to therapy. Although clinical evidence suggests biological differences between mutant KRAS alleles, these differences and the mechanisms underlying them are not well understood, and further exploration of allele-specific differences may provide evidence for individualized therapeutics. One approach to study allelic variation involves the use of isogenic cell lines that express different endogenous KRAS mutants. Here we developed an assay using fluorescent co-selection for CRISPR-driven gene editing to generate various Kras mutations in an isogenic murine colon epithelial cell line background. This assay involves generation of a cell line stably expressing Cas9 linked to BFP and simultaneous introduction of single-guide RNAs (sgRNAs) to two different gene loci resulting in double-editing events. Single-stranded donor oligonucleotides are introduced for a GFP gene and a Kras mutant allele of our choice as templates for homologous recombination (HDR). Cells that successfully undergo HDR are GFP-positive and have a higher probability of containing the desired Kras mutation. Therefore, selection for GFP-positive cells allows us to identify those with phenotypically silent Kras edits. Ultimately, this method allows us to toggle between different mutant alleles and preserve the wild-type allele while maintaining an isogenic background.

Keywords: Cancer; Co-selection; Epithelial cells; Gene editing; Isogenic cells; KRAS; Signal transduction; Small G proteins.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, Hellmann MD, Barron DA, Schram AM, Hameed M, Dogan S, Ross DS, Hechtman JF, DeLair DF, Yao J, Mandelker DL, Cheng DT, Chandramohan R, Mohanty AS, Ptashkin RN, Jayakumaran G, Prasad M, Syed MH, Rema AB, Liu ZY, Nafa K, Borsu L, Sadowska J, Casanova J, Bacares R, Kiecka IJ, Razumova A, Son JB, Stewart L, Baldi T, Mullaney KA, Al-Ahmadie H, Vakiani E, Abeshouse AA, Penson AV, Jonsson P, Camacho N, Chang MT, Won HH, Gross BE, Kundra R, Heins ZJ, Chen H-W, Phillips S, Zhang H, Wang J, Ochoa A, Wills J, Eubank M, Thomas SB, Gardos SM, Reales DN, Galle J, Durany R, Cambria R, Abida W, Cercek A, Feldman DR, Gounder MM, Hakimi AA, Harding JJ, Iyer G, Janjigian YY, Jordan EJ, Kelly CM, Lowery MA, Morris LGT, Omuro AM, Raj N, Razavi P, Shoushtari AN, Shukla N, Soumerai TE, Varghese AM, Yaeger R, Coleman J, Bochner B, Riely GJ, Saltz LB, Scher HI, Sabbatini PJ, Robson ME, Klimstra DS, Taylor BS, Baselga J, Schultz N, Hyman DM, Arcila ME, Solit DB, Ladanyi M, Berger MF (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23(6):703–713. https://doi.org/10.1038/nm.4333 - DOI - PubMed - PMC
    1. Haigis KM (2017) KRAS alleles: the devil is in the detail. Trends Cancer 3(10):686–697. https://doi.org/10.1016/j.trecan.2017.08.006 - DOI - PubMed - PMC
    1. Serebriiskii IG, Connelly C, Frampton G, Newberg J, Cooke M, Miller V, Ali S, Ross JS, Handorf E, Arora S, Lieu C, Golemis EA, Meyer JE (2019) Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun 10(1):3722–3722. https://doi.org/10.1038/s41467-019-11530-0 - DOI - PubMed - PMC
    1. Guerrero S, Casanova I, Farré L, Mazo A, Capellà G, Mangues R (2000) K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 60(23):6750–6756 - PubMed
    1. Smith G, Bounds R, Wolf H, Steele RJC, Carey FA, Wolf CR (2010) Activating K-Ras mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine. Br J Cancer 102(4):693–703. https://doi.org/10.1038/sj.bjc.6605534 - DOI - PubMed - PMC

Substances

LinkOut - more resources