Plasmonic Photoelectrochemistry: In View of Hot Carriers
- PMID: 33977588
- DOI: 10.1002/adma.202006654
Plasmonic Photoelectrochemistry: In View of Hot Carriers
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot-carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole-transfer dynamics and electron-transfer dynamics. This review summarizes a comprehensive understanding of both hot-hole and hot-electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.
Keywords: hot carriers; photocatalysis; photoelectrochemistry; plasmonic; spectroelectrochemistry.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes.Nano Lett. 2018 Apr 11;18(4):2545-2550. doi: 10.1021/acs.nanolett.8b00241. Epub 2018 Mar 15. Nano Lett. 2018. PMID: 29522350
-
Molecular-level Manipulation of Interface Charge Transfer on Plasmonic Metal/MOF Heterostructures.Chemphyschem. 2023 Jan 3;24(1):e202200565. doi: 10.1002/cphc.202200565. Epub 2022 Oct 17. Chemphyschem. 2023. PMID: 36124812 Review.
-
Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.Acc Chem Res. 2022 Dec 20;55(24):3727-3737. doi: 10.1021/acs.accounts.2c00623. Epub 2022 Dec 6. Acc Chem Res. 2022. PMID: 36473156
-
Plasmon-Driven Catalysis on Molecules and Nanomaterials.Acc Chem Res. 2019 Sep 17;52(9):2506-2515. doi: 10.1021/acs.accounts.9b00224. Epub 2019 Aug 19. Acc Chem Res. 2019. PMID: 31424904
-
Hot Electrons in TiO2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis.Nanomaterials (Basel). 2021 May 10;11(5):1249. doi: 10.3390/nano11051249. Nanomaterials (Basel). 2021. PMID: 34068571 Free PMC article. Review.
Cited by
-
Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality.Nat Commun. 2024 Sep 3;15(1):7671. doi: 10.1038/s41467-024-51194-z. Nat Commun. 2024. PMID: 39227588 Free PMC article.
-
Metal-Polymer Heterojunction in Colloidal-Phase Plasmonic Catalysis.J Phys Chem Lett. 2022 Mar 17;13(10):2264-2272. doi: 10.1021/acs.jpclett.1c04242. Epub 2022 Mar 3. J Phys Chem Lett. 2022. PMID: 35239345 Free PMC article.
-
Time-dependent measurement of plasmon-induced charge separation on a gold nanoparticle/TiO2 interface by electrostatic force microscopy.Sci Rep. 2022 Oct 6;12(1):16678. doi: 10.1038/s41598-022-21111-9. Sci Rep. 2022. PMID: 36202906 Free PMC article.
-
Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate.Molecules. 2023 Dec 8;28(24):8011. doi: 10.3390/molecules28248011. Molecules. 2023. PMID: 38138501 Free PMC article. Review.
-
Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets.Nat Commun. 2023 May 3;14(1):2551. doi: 10.1038/s41467-023-38235-9. Nat Commun. 2023. PMID: 37137916 Free PMC article.
References
-
- Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, W. D. Wei, Chem. Rev. 2018, 118, 2927.
-
- a) M. L. Brongersma, N. J. Halas, P. Nordlander, Nat. Nanotechnol. 2015, 10, 25;
-
- b) S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911;
-
- c) P. Christopher, M. Moskovits, Annu. Rev. Phys. Chem. 2017, 68, 379;
-
- d) Y. Zhang, Y. Zhang, W. Guo, A. C. Johnston-Peck, Y. Hu, X. Song, W. D. Wei, Energy Environ. Sci. 2020, 13, 1501.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources