Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul:208:108616.
doi: 10.1016/j.exer.2021.108616. Epub 2021 May 9.

The potential role of m6A RNA methylation in diabetic retinopathy

Affiliations
Review

The potential role of m6A RNA methylation in diabetic retinopathy

Nidhi Kumari et al. Exp Eye Res. 2021 Jul.

Abstract

Diabetic retinopathy (DR), a major microvascular complication of diabetes, affects most diabetic individuals and has become the leading cause of vision loss. Metabolic memory associated with diabetes retains the risk of disease occurrence even after the termination of glycemic insult. Further, various limitations associated with its current diagnostic and treatment strategies like unavailability of early diagnostic and treatment methods, variation in treatment response from patient to patient, and cost-effectiveness have driven the need to find alternative solutions. Post-transcriptional epigenetic modification of RNA mainly, N6-methyladenosine (m6A), is an emerging concept in the scientific community. It has an indispensable effect in various physiological and pathological conditions. m6A mediates its effect through the various reader, writer, and eraser proteins. Recent studies have shown the impact of m6A RNA modification on various disease conditions, including diabetes, but its role in diabetic retinopathy is still unclear. However, change in m6A levels has been observed in various prime aggravators of DR pathogenesis, such as inflammation, oxidative stress, and angiogenesis. Further, various non-coding RNAs like microRNA, lncRNA, and circRNA are also associated with DR, and m6A has been shown to affect all these non-coding RNAs. This review is concerned with the possible mechanisms through which alteration in m6A modification of RNA can participate in the DR progression and pathogenesis and its expected role in metabolic memory phenomena.

Keywords: Diabetic retinopathy; Epitranscriptomics; Metabolic memory; m6A RNA methylation.

PubMed Disclaimer

Publication types

LinkOut - more resources