Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;593(7858):223-227.
doi: 10.1038/s41586-021-03448-9. Epub 2021 May 12.

Skeletal editing through direct nitrogen deletion of secondary amines

Affiliations

Skeletal editing through direct nitrogen deletion of secondary amines

Sean H Kennedy et al. Nature. 2021 May.

Erratum in

Abstract

Synthetic chemistry aims to build up molecular complexity from simple feedstocks1. However, the ability to exert precise changes that manipulate the connectivity of the molecular skeleton itself remains limited, despite possessing substantial potential to expand the accessible chemical space2,3. Here we report a reaction that 'deletes' nitrogen from organic molecules. We show that N-pivaloyloxy-N-alkoxyamides, a subclass of anomeric amides, promote the intermolecular activation of secondary aliphatic amines to yield intramolecular carbon-carbon coupling products. Mechanistic experiments indicate that the reactions proceed via isodiazene intermediates that extrude the nitrogen atom as dinitrogen, producing short-lived diradicals that rapidly couple to form the new carbon-carbon bond. The reaction shows broad functional-group tolerance, which enables the translation of routine amine synthesis protocols into a strategy for carbon-carbon bond constructions and ring syntheses. This is highlighted by the use of this reaction in the syntheses and skeletal editing of bioactive compounds.

PubMed Disclaimer

Comment in

References

    1. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).
    1. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018). - DOI
    1. Huigens, R. W., III et al. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat. Chem. 5, 195–202 (2013). - DOI
    1. Szpilman, A. M. & Carreira, E. M. Probing the biology of natural products: molecular editing by diverted total synthesis. Angew. Chem. Int. Ed. 49, 9592–9628 (2010). - DOI
    1. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016). - DOI

Publication types

MeSH terms

LinkOut - more resources