Organic Cation Transporters in Brain Catecholamine Homeostasis
- PMID: 33987762
- DOI: 10.1007/164_2021_470
Organic Cation Transporters in Brain Catecholamine Homeostasis
Abstract
Catecholamines, including dopamine, norepinephrine, and epinephrine, are modulatory transmitters released from specialized neurons throughout the brain. Collectively, catecholamines exert powerful regulation of mood, motivation, arousal, and plasticity. Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released catecholamines, thus playing key roles in determining the magnitude and duration of their modulatory effects. Most studies of catecholamine clearance have focused on the presynaptic high-affinity, low-capacity dopamine (DAT), and norepinephrine (NET) transporters, which are members of the uptake1 family of monoamine transporters. However, recent studies have demonstrated that members of the uptake2 family of monoamine transporters, including organic cation transporter 2 (OCT2), OCT3, and the plasma membrane monoamine transporter (PMAT) are expressed widely throughout the brain. In contrast to DAT and NET, these transporters have higher capacity and lower affinity for catecholamines and are multi-specific, each with the capacity to transport all catecholamines. The expression of these transporters in the brain suggests that they play significant roles in regulating catecholamine homeostasis. This review summarizes studies describing the anatomical distribution of OCT2, OCT3, and PMAT, their cellular and subcellular localization, and their contribution to the regulation of the clearance of catecholamines in the brain.
Keywords: Catecholamine; Clearance; Dopamine; Epinephrine; Norepinephrine; OCT1; OCT2; OCT3; Organic cation transporter; PMAT; Uptake.
© 2021. The Author(s), under exclusive license to Springer Nature Switzerland AG.
References
-
- Amphoux A, Vialou V, Drescher E et al (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952. https://doi.org/10.1016/j.neuropharm.2006.01.005 - DOI - PubMed
-
- Bacq A, Balasse L, Biala G et al (2012) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17:926–939. https://doi.org/10.1038/mp.2011.87 - DOI
-
- Baganz NL, Horton RE, Calderon AS et al (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 105:18976–18981. https://doi.org/10.1073/pnas.0800466105 - DOI - PubMed - PMC
-
- Boivin B, Lavoie C, Vaniotis G et al (2006) Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 71:69–78. https://doi.org/10.1016/j.cardiores.2006.03.015 - DOI - PubMed
-
- Bowman MA, Mitchell NC, Owens WA et al (2020) Effect of concurrent organic cation transporter blockade on norepinephrine clearance inhibiting- and antidepressant-like actions of desipramine and venlafaxine. Eur J Pharmacol 883:173285. https://doi.org/10.1016/j.ejphar.2020.173285 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
