Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios - United States, April-September 2021

Rebecca K Borchering et al. MMWR Morb Mortal Wkly Rep. .

Abstract

After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months.

PubMed Disclaimer

Conflict of interest statement

All authors have completed and submitted the International Committee of Medical Journal Editors form for disclosure of potential conflicts of interest. Katriona Shea reports receipt of two National Science Foundation (NSF) COVID-19 RAPID awards, and a Huck Institutes of the Life Sciences Coronavirus Research Seed Grant. Rebecca Borchering reports funding from an NSF COVID-19 RAPID award. Katharine Tallaksen, Kaitlin Rainwater-Lovett, Laura Asher, Luke C. Mullany, Molly E. Gallagher, Matt Kinsey, Richard F. Obrecht, and Lauren Shin report funding from the U.S. Department of Health and Human Services (HHS), Office of the Assistant Secretary for Preparedness and Response to the Johns Hopkins Applied Physics Laboratory. Matteo Chinazzi reports grants from the National Institutes of Health (NIH), the Council of State and Territorial Epidemiologists (CSTE), and Metabiota to Northeastern University. Ana Pastore y Piontti reports funding from Metabiota, Inc. to Northeastern University and royalties from Springer Publishing. Joseph Lemaitre reports funding from the Swiss National Science Foundation, State of California, HHS, and the Department of Homeland Security (DHS). Kyra H. Grantz reports support from the California Department of Public Health, Johns Hopkins Bloomberg School of Public Health, NIH, and travel support from the World Health Organization (WHO). Elizabeth Lee and Claire Smith report support from the California Department of Public Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Health System, HHS, and DHS, and computing resources from Amazon Web Services, Johns Hopkins University Modeling and Policy Hub, and the Office of the Dean at the Johns Hopkins Bloomberg School of Public Health. Justin Lessler reports support from DHHS, DHS, California Institute of Technology, NIH, honorarium from the American Association for Cancer Research, personal fees for expert testimony from Paul, Weiss, Rifkind, Wharton & Garrison, LLP. Lindsay Keegan reports support from the State of California, and NIH, a University of Utah Immunology, Inflammation, and Infectious Disease Seed Grant, and a scholarship from the University of Washington Summer Institute in Statistics and Modeling of Infectious Diseases. Lucie Contamin, John Levander, Jessica Salerno, and Willem Gijsbert van Panhuis report a National Institute of General Medical Sciences grant. Ajitesh Srivastava reports a grant from the National Science Foundation. Michael C. Runge reports stock ownership in Becton Dickinson & Co., which manufactures medical equipment used in COVID testing, vaccination, and treatment. Alessandro Vespignani reports grants from NIH, NSF, WHO, CSTE, Metabiota Inc., Templeton Foundation, Scientific Interchange Foundation, Bill & Melinda Gates Foundation; royalties from Cambridge University Press, World Scientific, Springer Publishing, and Il Saggiatore; consulting fees from Human Technopole Foundation, Institute for Scientific Interchange Foundation, honorarium for lecture module at University of Washington; Scientific Advisory Board member of the Institute for Scientific Interchange Foundation, Italy, Supervisory Board member of the Human Technopole Foundation, Italy; and gifts to Northeastern University from the McGovern Foundation, the Chleck Foundation, the Sternberg Family, J. Pallotta, and Google Cloud research credits for COVID-19 from Google. Akhil Sai Peddireddy, Pyrros A. Telionis, Anil Vullikanti, Jiangzhuo Chen, Benjamin Hurt, Brian D. Klahn, Bryan Lewis, James Schlitt, Joseph Outten, Lijing Wang, Madhav Marathe, Patrick Corbett, Przemyslaw Porebski, and Srinivasan Venkatramanan report institutional support from the National Science Foundation, Expeditions, NIH, the U.S. Department of Defense, Virginia Department of Health, Virginia Department of Emergency Management, University of Virginia (internal seed grants), and Accuweather. No other potential conflicts of interest were disclosed.

Figures

FIGURE 1
FIGURE 1
Weekly projections of reported numbers of cases (A), hospitalizations (B), and deaths (C) under four scenarios representing different levels of vaccination and nonpharmaceutical intervention adherence — United States, March 27–September 25, 2021 Abbreviation: NPI = nonpharmaceutical intervention. * Historical data are shown as filled points, curves represent ensemble projections based on six models, and the grey area represents the maximum and minimum of the 50% projection intervals among all four scenarios. Vertical arrows represent the last date of observations used in the projections. Observations available after projections were made are shown as open points. Projection intervals are based on the 25th percentile of the more optimistic scenario (high vaccination and moderate NPI use) and the 75th percentile of the more pessimistic scenario (low vaccination and low NPI use). Ensemble projection curves represent the median of six median model projections, so they might not always appear smooth; the discontinuity in low vaccination scenario ensembles arises as two models project a late summer resurgence.
FIGURE 2
FIGURE 2
Excess percentage of reported cases, hospitalizations, and deaths projected to occur under scenarios with reduced vaccination coverage, nonpharmaceutical intervention adherence, or both, compared with the more optimistic scenario (high vaccination and moderate nonpharmaceutical intervention adherence), nationally (A) and by state (B) — United States, March 27–September 25, 2021 Abbreviation: NPI = nonpharmaceutical intervention. * Cumulative estimates for the projection period March 27–September 25, 2021, are compared with the more optimistic scenario (high vaccination and moderate NPI). National estimates represent the range of projections generated by the six contributing teams (symbols = individual models, dash = ensemble median). Individual models have been developed by six academic teams and are named JHU_IDD-CovidSP (A); JHUAPL-Bucky (B); Karlen-pypm (C); MOBS_NEU-GLEAM_COVID (D); USC-SIkJalpha (E); and UVA-adaptive (F). Details on model structure and assumptions are available at MIDAS Network COVID-19 Scenario Modeling Hub. Accessed April 19, 2021. https://github.com/midas-network/covid19-scenario-modeling-hub § Box plots represent the distribution of ensemble estimates in the 50 U.S. states and the District of Columbia. Boxes represent the interquartile range and the horizontal lines within each box represent the median. The whiskers extend to the most extreme data point that is no further from the box than 1.5 times the interquartile range.

References

    1. CDC. COVID data tracker. Atlanta, GA: US Department of Health and Human Services, CDC; 2020. Accessed April 19, 2021. https://covid.cdc.gov/covid-data-tracker/#datatracker-home
    1. Johns Hopkins University & Medicine. Johns Hopkins Coronavirus Resource Center. Baltimore, MD: Johns Hopkins University & Medicine; 2020. Accessed April 19, 2021. https://origin-coronavirus.jhu.edu/
    1. Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 lineage—United States, December 29, 2020–January 12, 2021. MMWR Morb Mortal Wkly Rep 2021;70:95–9. 10.15585/mmwr.mm7003e2 - DOI - PMC - PubMed
    1. MIDAS Network. COVID-19 scenario modeling hub. San Francisco, CA: Github; 2021. Accessed April 19, 2021. https://github.com/midas-network/covid19-scenario-modeling-hub
    1. US Department of Health and Human Services. COVID-19 reported patient impact and hospital capacity by state timeseries. Washington, DC: US Department of Health and Human Services; 2020. Accessed April 19, 2021. https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hos...

Substances