Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Aug;28(8):2794-2803.
doi: 10.1111/ene.14916. Epub 2021 Jun 18.

The core/penumbra model: implications for acute stroke treatment and patient selection in 2021

Affiliations
Review

The core/penumbra model: implications for acute stroke treatment and patient selection in 2021

Jean-Claude Baron. Eur J Neurol. 2021 Aug.

Abstract

Despite major advances in prevention, ischaemic stroke remains one of the leading causes of death and disability worldwide. After centuries of nihilism and decades of failed neuroprotection trials, the discovery, initially in non-human primates and subsequently in man, that ischaemic brain tissue termed the ischaemic penumbra can be salvaged from infarction up to and perhaps beyond 24 h after stroke onset has underpinned the development of highly efficient reperfusion therapies, namely intravenous thrombolysis and endovascular thrombectomy, which have revolutionized the management of the acute stroke patient. Animal experiments have documented that how long the penumbra can survive depends not only on time elapsed since arterial occlusion ('time is brain'), but also on how severely perfusion is reduced. Novel imaging techniques allowing the penumbra and the already irreversibly damaged core in the individual subject to be mapped have documented that the time course of core growth at the expense of the penumbra widely differs from patient to patient, and hence that individual physiology should be considered in addition to time since stroke onset for decision-making. This concept has been implemented to optimize patient selection in pivotal trials of reperfusion therapies beyond 3 h after stroke onset and is now routinely applied in clinical practice, using computed tomography or magnetic resonance imaging. The notion that, in order to be both efficient and harmless, treatment should be tailored to each patient's physiological characteristics represents a radical move towards precision medicine.

Keywords: computed tomography; ischaemic stroke; magnetic resonance imaging; positron emission tomography; precision medicine; reperfusion therapies; thrombectomy; thrombolysis.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581-1587.
    1. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317-1329.
    1. Campbell BCV, Ma H, Ringleb PA, et al. Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet. 2019;394:139-147.
    1. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723-1731.
    1. Albers GW. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708-718.

LinkOut - more resources