Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery
- PMID: 33993638
- PMCID: PMC8313276
- DOI: 10.1111/1751-7915.13823
Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery
Abstract
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm-2 ) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm-2 ). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3 , respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.
© 2021 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Conflict of interest statement
The authors claim no conflict of interest.
Figures




Similar articles
-
Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.Appl Biochem Biotechnol. 2021 Apr;193(4):1170-1186. doi: 10.1007/s12010-020-03469-6. Epub 2020 Nov 17. Appl Biochem Biotechnol. 2021. PMID: 33200267 Review.
-
Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.Environ Sci Technol. 2011 Dec 1;45(23):10250-6. doi: 10.1021/es2025214. Epub 2011 Oct 28. Environ Sci Technol. 2011. PMID: 21981730
-
Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.Appl Environ Microbiol. 2017 Aug 17;83(17):e00903-17. doi: 10.1128/AEM.00903-17. Print 2017 Sep 1. Appl Environ Microbiol. 2017. PMID: 28625998 Free PMC article.
-
Shewanella biofilm development and engineering for environmental and bioenergy applications.Curr Opin Chem Biol. 2020 Dec;59:84-92. doi: 10.1016/j.cbpa.2020.05.004. Epub 2020 Aug 1. Curr Opin Chem Biol. 2020. PMID: 32750675 Review.
-
Identification of a Diguanylate Cyclase That Facilitates Biofilm Formation on Electrodes by Shewanella oneidensis MR-1.Appl Environ Microbiol. 2021 Apr 13;87(9):e00201-21. doi: 10.1128/AEM.00201-21. Print 2021 Apr 13. Appl Environ Microbiol. 2021. PMID: 33637573 Free PMC article.
Cited by
-
Bacterial biofilm functionalization through Bap amyloid engineering.NPJ Biofilms Microbiomes. 2022 Aug 1;8(1):62. doi: 10.1038/s41522-022-00324-w. NPJ Biofilms Microbiomes. 2022. PMID: 35909185 Free PMC article.
-
Induction of potent antitumor immunity by intradermal DNA injection using a novel needle-free pyro-drive jet injector.Cancer Sci. 2023 Jan;114(1):34-47. doi: 10.1111/cas.15542. Epub 2022 Oct 17. Cancer Sci. 2023. PMID: 36000926 Free PMC article.
-
Engineering bionanoreactor in bacteria for efficient hydrogen production.Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2404958121. doi: 10.1073/pnas.2404958121. Epub 2024 Jul 10. Proc Natl Acad Sci U S A. 2024. PMID: 38985767 Free PMC article.
-
Microbe-Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES).Microb Biotechnol. 2023 Jun;16(6):1179-1202. doi: 10.1111/1751-7915.14236. Epub 2023 Feb 18. Microb Biotechnol. 2023. PMID: 36808480 Free PMC article. Review.
References
-
- Alpkvist, E. , Picioreanu, C. , van Loosdrecht, M.C. , and Heyden, A. (2006) Three‐dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol Bioeng 94(5), 961–979. - PubMed
-
- Botyanszki, Z. , Tay, P.K.R. , Nguyen, P.Q. , Nussbaumer, M.G. , Joshi, N.S. & (2015) Engineered catalytic biofilms: Site‐specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol Bioeng 112(10), 2016–2024. - PubMed
-
- Brim, H. , McFarlan, S.C. , Fredrickson, J.K. , Minton, K.W. , Zhai, M. , Wackett, L.P. , and Daly, M.J. (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18: 85–90. - PubMed
-
- Cabrero, A. , Fernandez, S. , Mirada, F. , and Garcia, J. (1998) Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res 32(5), 1355–1362.
-
- Cao, B. , Shi, L. , Brown, R.N. , Xiong, Y. , Fredrickson, J.K. , Romine, M.F. , et al. (2011) Extracellular polymeric substances from Shewanella sp. HRCR‐1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 13(4), 1018–1031. - PubMed
Publication types
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials