Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 30:12:667824.
doi: 10.3389/fphar.2021.667824. eCollection 2021.

Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug-Induced Acute Urticaria/Angioedema

Affiliations

Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug-Induced Acute Urticaria/Angioedema

Raquel Jurado-Escobar et al. Front Pharmacol. .

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the main triggers of drug hypersensitivity reactions, probably due to their high consumption worldwide. The most frequent type of NSAID hypersensitivity is NSAID cross-hypersensitivity, in which patients react to NSAIDs from different chemical groups in the absence of a specific immunological response. The underlying mechanism of NSAID cross-hypersensitivity has been linked to cyclooxygenase (COX)-1 inhibition causing an imbalance in the arachidonic acid pathway. Despite NSAID-induced acute urticaria/angioedema (NIUA) being the most frequent clinical phenotype, most studies have focused on NSAID-exacerbated respiratory disease. As NSAID cross-hypersensitivity reactions are idiosyncratic, only appearing in some subjects, it is believed that individual susceptibility is under the influence of genetic factors. Although associations with polymorphisms in genes from the AA pathway have been described, no previous study has evaluated the potential role of cytosolic phospholipase A2 (cPLA2) variants. This enzyme catalyzes the initial hydrolysis of membrane phospholipids to release AA, which can be subsequently metabolized into eicosanoids. Here, we analyzed for the first time the overall genetic variation in the cPLA2 gene (PLA2G4A) in NIUA patients. For this purpose, a set of tagging single nucleotide polymorphisms (tagSNPs) in PLA2G4A were selected using data from Europeans subjects in the 1,000 Genomes Project, and genotyped with the iPlex Sequenom MassArray technology. Two independent populations, each comprising NIUA patients and NSAID-tolerant controls, were recruited in Spain, for the purposes of discovery and replication, comprising a total of 1,128 individuals. Fifty-eight tagSNPs were successfully genotyped in the discovery cohort, of which four were significantly associated with NIUA after Bonferroni correction (rs2049963, rs2064471, rs12088010, and rs12746200). These polymorphisms were then genotyped in the replication cohort: rs2049963 was associated with increased risk for NIUA after Bonferroni correction under the dominant and additive models, whereas rs12088010 and rs12746200 were protective under these two inheritance models. Our results suggest a role for PLA2G4A polymorphisms in NIUA. However, further studies are required to replicate our findings, elucidate the mechanistic role, and evaluate the participation of PLA2G4A variants in other phenotypes induced by NSAID cross-hypersensitivity.

Keywords: NSAID cross-hypersensitivity; arachidomic acid; cytosolic phospholipase A2; polymorphisms; urticaria/angioedema.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Similar articles

Cited by

References

    1. AlFadhli S. (2013). Influence of Endothelial Nitric Oxide Synthase Gene Intron-4 27bp Repeat Polymorphism on its Expression in Autoimmune Diseases. Dis. Markers 34 (5), 349–356. 10.3233/DMA-130983 - DOI - PMC - PubMed
    1. Ayuso P., Plaza-Serón M. d. C., Doña I., Blanca-López N., Campo P., Cornejo-García J. A., et al. (2015). Association Study of Genetic Variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A Genes in NSAIDs-Induced Urticaria And/or Angioedema Patients. Pharmacogenet Genomics 25 (12), 618–621. 10.1097/FPC.0000000000000179 - DOI - PubMed
    1. Barrett J. C., Fry B., Maller J., Daly M. J. (2005). Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 21 (2), 263–265. 10.1093/bioinformatics/bth457 - DOI - PubMed
    1. Beltrami C. M., Dos Reis M. B., Barros-Filho M. C., Marchi F. A., Kuasne H., Pinto C. A. L., et al. (2017). Integrated Data Analysis Reveals Potential Drivers and Pathways Disrupted by DNA Methylation in Papillary Thyroid Carcinomas. Clin. Epigenet 9, 45. 10.1186/s13148-017-0346-2 - DOI - PMC - PubMed
    1. Blackburn J., Roden D. L., Ng R., Wu J., Bosman A., Epstein R. J. (2016). Damage‐inducible Intragenic Demethylation of the Human TP53 Tumor Suppressor Gene Is Associated with Transcription from an Alternative Intronic Promoter. Mol. Carcinog. 55 (12), 1940–1951. 10.1002/mc.22441 - DOI - PMC - PubMed