Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 29:12:658593.
doi: 10.3389/fimmu.2021.658593. eCollection 2021.

Characterization of T-Cell Responses to SMX and SMX-NO in Co-Trimoxazole Hypersensitivity Patients Expressing HLA-B*13:01

Affiliations

Characterization of T-Cell Responses to SMX and SMX-NO in Co-Trimoxazole Hypersensitivity Patients Expressing HLA-B*13:01

Jirawat Pratoomwun et al. Front Immunol. .

Abstract

HLA-B*13:01-positive patients in Thailand can develop frequent co-trimoxazole hypersensitivity reactions. This study aimed to characterize drug-specific T cells from three co-trimoxazole hypersensitive patients presenting with either Stevens-Johnson syndrome or drug reaction with eosinophilia and systemic symptoms. Two of the patients carried the HLA allele of interest, namely HLA-B*13:01. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones were generated from T cell lines of co-trimoxazole hypersensitive HLA-B*13:01-positive patients. Clones were characterized for antigen specificity and cross-reactivity with structurally related compounds by measuring proliferation and cytokine release. Surface marker expression was characterized via flow cytometry. Mechanistic studies were conducted to assess pathways of T cell activation in response to antigen stimulation. Peripheral blood mononuclear cells from all patients were stimulated to proliferate and secrete IFN-γ with nitroso sulfamethoxazole. All sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones expressed the CD4+ phenotype and strongly secreted IL-13 as well as IFN-γ, granzyme B and IL-22. No secretion of IL-17 was observed. A number of nitroso sulfamethoxazole-specific clones cross-reacted with nitroso dapsone but not sulfamethoxazole whereas sulfamethoxazole specific clones cross-reacted with nitroso sulfamethoxazole only. The nitroso sulfamethoxazole specific clones were activated in both antigen processing-dependent and -independent manner, while sulfamethoxazole activated T cell responses via direct HLA binding. Furthermore, activation of nitroso sulfamethoxazole-specific, but not sulfamethoxazole-specific, clones was blocked with glutathione. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones from hypersensitive patients were CD4+ which suggests that HLA-B*13:01 is not directly involved in the iatrogenic disease observed in co-trimoxazole hypersensitivity patients.

Keywords: T cell; co-trimoxazole; drug hypersensitivity; human leukocyte antigen; sulfamethoxazole.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
ELISpot images of cytokine secretion by SMX-NO and SMX specific T cell clones. TCCs (5x104) were cultured with irradiated autologous EBV-transformed B-cells (1x104) in the presence or absence of SMX-NO (40 µM) or SMX (1 mM) in an ELISpot plate pre-coated for IFN-γ, granzyme B, IL-13, IL-17 and IL-22 for 48h (37˚C; 5% CO2). Following incubation, the plate was developed according to the manufactures instructions visualized by ELISpot AID reader.
Figure 2
Figure 2
The proliferative response of SMX-NO specific T cell clones. (A) T cell clones (5x104) were culture with autologous EBV-transformed B-cells (1x104) and SMX-NO (40 µM) in the presence or absence of HLA class I and class II blocking antibodies for 48 hours (37°C, 5% CO2). Following incubation, [3H]-thymidine (0.5 μCi) were added to measure proliferative response. (B) T cell activation of SMX-NO clones in the response of different HLA-B. T cell clones (5x104) were cultured with SMX-NO (40 µM) and irradiated EBV-transformed B-cells (1x104) from 9 different patients carrying HLA-B*13:01 (P1-3), -B*57:01 (P4-6) and other HLA-B (P7-9).
Figure 3
Figure 3
SMX-NO stimulates specific T cell via antigen processing-dependent and processing-independent pathways. Autologous EBV-transformed B-cells (1x104) were incubated with T cell clones (5x104) in the presence or absence of SMX-NO (40 µM) for 1 and 16 hours. For fixation assay, SMX-NO specific clones (5x104) were cultured with either irradiated or glutaraldehyde-fixed autologous EBV-transformed B-cell (1x104) in the presence of SMX-NO (40 µM) for 48 hours (37˚C; 5% CO2). [3H]-thymidine (0.5 μCi) incorporation was used to measure proliferative response. (A) SMX-NO T cell clones are stimulated in the presence of glutaraldehyde-fixed APC (B) Glutaraldehyde-fixed APC reduced the proliferative response of SMX-NO T cell clones.
Figure 4
Figure 4
The proliferative response of SMX-NO and SMX specific T cell clones in the presence of glutathione (GSH) and enzyme inhibitors. (A) Autologous EBV-transformed B-cells (1x104) were culture with T cell clones (5x104) in the presence or absence of GSH (1 mM). For pulsing EBVs, T cell clones (5x104) were culture with and without 2 h pulsed-antigen presenting cells (1x104) in the presence or absence of SMX-NO (40 µM) or SMX (1 mM) for 48 hours (37˚C; 5% CO2). After incubation, [3H]-thymidine (0.5 μCi) were added to measure proliferative response. (B) 16 h-enzyme inhibitor pulsed EBVs (1x104) were incubated with T cell clones (5×104) for 48 hours (5% CO2 at 37˚C). For normal condition, Autologous EBV-transformed B-cells were cultured with T cell clones and enzyme inhibitors for 1 hour (5% CO2 at 37˚C) and 40 µM nitroso sulfamethoxazole. Following incubation, the plate was developed according to the manufactures instructions visualized by ELISpot AID reader. Methimazole; Meth, 1-aminobenzotriazole; ABT.
Figure 5
Figure 5
T cell activation in response to antigen stimulation of SMX specific clone. Autologous EBV-transformed B-cells (1x104) were incubated with SMX (1 mM) for 1 and 16 hours, and then incubated with T cell clones (5x104) after three washing steps. For fixation assay, SMX specific T cell clones (1x104) were cultured with either irradiated or glutaraldehyde-fixed autologous EBV-transformed B-cell (5x104) in the presence of SMX (1 mM) for 48 hours (37°C, 5% CO2). After incubation, [3H]-thymidine (0.5 μCi) incorporation was used to measure proliferative response.

Similar articles

Cited by

References

    1. Alanazi MQ, Alqahtani FY, Aleanizy FS. An Evaluation of E. Coli in Urinary Tract Infection in Emergency Department At KAMC in Riyadh, Saudi Arabia: Retrospective Study. Ann Clin Microbiol Antimicrob (2018) 17:3. 10.1186/s12941-018-0255-z - DOI - PMC - PubMed
    1. Ho JM, Juurlink DN. Considerations When Prescribing Trimethoprim-Sulfamethoxazole. Cmaj (2011) 183:1851–8. 10.1503/cmaj.111152 - DOI - PMC - PubMed
    1. Rueda-Valencia Mde L, Infante S, Campos M, Beléndez C, Lozano JS. Trimethoprim-Sulfamethoxazole-Induced DRESS Syndrome in a 4-Year-Old Child. Ann Allergy Asthma Immunol (2016) 116:366–7. 10.1016/j.anai.2015.12.009 - DOI - PubMed
    1. Taqi SA, Zaki SA, Nilofer AR, Sami LB. Trimethoprim-Sulfamethoxazole-Induced Steven Johnson Syndrome in an HIV-infected Patient. Indian J Pharmacol (2012) 44:533–5. 10.4103/0253-7613.99346 - DOI - PMC - PubMed
    1. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A. Overview of Methodologies for T-cell Receptor Repertoire Analysis. BMC Biotechnol (2017) 17:1–16. 10.1186/s12896-017-0379-9 - DOI - PMC - PubMed

Publication types

MeSH terms

Substances