Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 18;12(17):6064-6072.
doi: 10.1039/d1sc00856k.

A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters

Affiliations

A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters

Guanglong Su et al. Chem Sci. .

Abstract

An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA).

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative pharmaceutically active compounds containing a hydroquinazoline core.
Scheme 1
Scheme 1. Previous enantioselective syntheses of hydroquinazoline.
Scheme 2
Scheme 2. (A) Scope of the BIMP-catalyzed intramolecular aza-Michael reaction to α,β-unsaturated ester. [a] Reaction carried out at 80 °C. [b] Reaction carried out at 40 °C. [c] 30 hours reaction time. [d] 48 hours reaction time. [e] 72 hours reaction time. [f] 5 mol% cat. K was used. [g] Reaction carried out at 50 °C. [h] Reaction carried out at 60 °C. [i] 120 hours reaction time. [j] 216 hours reaction time. (B) Preparative scale synthesis of 2j. Stereochemical configuration was assigned by analogy with (R)-2j (determined by single crystal X-ray diffraction studies).
Scheme 3
Scheme 3. Derivatization of enantioenriched 2j. [a] (i) TFA, CH2Cl2, 0 °C to RT, 5 h. (ii) SOCl2, MeOH, 20 h. [b] (i) TFA, CH2Cl2, 0 °C to RT, 5 h. (ii) (COCl)2, DMF (cat.), CH2Cl2, 2 h. (iii) BnNH2, Et3N, CH2Cl2, 18 h. [c] 1-Methyl-1H-pyrazole-3-boronic acid pinacol ester, Pd(dppf)Cl2CH2Cl2, Cs2CO3, 1,4-dioxane, H2O. [d] Erlotinib (HCl complex), PdCl2(PPh3)2, CuI, PPh3, Et3N.
Scheme 4
Scheme 4. (A) Lowest energy TS structure for the formation of (R)-product and (B) lowest energy TS structure for the formation of (S)-product of the BIMP squaramide-catalyzed intramolecular aza-Michael reaction computed at COSMO(toluene)-ZORA-M06-2X/TZ2P//COSMO(toluene)-ZORA-BLYP-D3(BJ)/DZP. Energies (kcal mol−1) and forming bond lengths (Å) of TS geometries are provided in the insert.
Scheme 5
Scheme 5. (A) Interaction energies and the energy decomposition analysis (EDA) of the hydrogen bond donor–methyl acrylate complexes (HB–MA). (B) Energy barriers of the aza-Michael reaction transition structures and the activation strain analysis (ASA) and the energy decomposition analysis (EDA). (C) Molecular orbital diagram and the most significant occupied orbital overlaps computed at COSMO(toluene)-ZORA-M06-2X/TZ2P//COSMO(toluene)-ZORA-BLYP-D3(BJ)/DZP. Energies (kcal mol−1) are provided in the insert.

Similar articles

Cited by

References

    1. Shagufta W. Ahmad I. Med. Chem. Commun. 2017;8:871–885. - PMC - PubMed
    2. Tiwary B. K. Pradhan K. Nanda A. K. Chakraborty R. J. Chem. Biol. Ther. 2015;1:104.
    3. Patterson S. Alphey M. S. Jones D. C. Shanks E. J. Street I. P. Frearson J. A. Wyatt P. G. Gilbert I. H. Fairlamb A. H. J. Med. Chem. 2011;54:6514–6530. - PMC - PubMed
    4. Hemalatha K. Madhumitha G. Eur. J. Med. Chem. 2016;123:596–630. - PubMed
    5. Thanigaimalai P. Lee K.-C. Bang S.-C. Lee J.-H. Yun C.-Y. Roh E. Hwang B.-Y. Kim Y. Jung S.-H. Bioorg. Med. Chem. 2010;18:1555–1562. - PubMed
    6. Thanigaimalai P. Sharma V. K. Lee K.-C. Yun C.-Y. Kim Y. Jung S.-H. Bioorg. Med. Chem. Lett. 2010;20:4771–4773. - PubMed
    7. Hasegawa H. Muraoka M. Matsui K. Kojima A. Bioorg. Med. Chem. Lett. 2003;13:3471–3475. - PubMed
    8. Bernardelli P. Lorthiois E. Vergne F. Oliveira C. Mafroud A.-K. Proust E. Pham N. Ducrot P. Moreau F. Idrissi M. Tertre A. Bertin B. Coupe M. Chevalier E. Descours A. Berlioz-Seux F. Berna P. Li M. Bioorg. Med. Chem. Lett. 2004;14:4627–4631. - PubMed
    9. Gawad N. M. A. Georgey H. H. Youssef R. M. El-Sayed N. A. Eur. J. Med. Chem. 2010;45:6058–6067. - PubMed
    10. Byun J. S. Sohn J. M. Leem D. G. Park B. Nam J. H. Shin D. H. Shin J. S. Kim H. J. Lee K.-T. Lee J. Y. Bioorg. Med. Chem. Lett. 2016;26:1073–1079. - PubMed
    11. Patterson S. Alphey M. S. Jones D. C. Shanks E. J. Street I. P. Frearson J. A. Wyatt P. G. Gilbert I. H. Fairlamb A. H. J. Med. Chem. 2011;54:6514–6530. - PMC - PubMed
    12. Schlegel K.-A. S. Yang Z.-Q. Reger T. S. Shu Y. Cube R. Rittle K. E. Bondiskey P. Bock M. G. Hartman G. D. Tang C. Ballard J. Kuo Y. Prueksaritanont T. Nuss C. E. Doran S. M. Fox S. V. Garson S. L. Kraus R. L. Li Y. Uebele V. N. Renger J. J. Barrow J. C. Bioorg. Med. Chem. Lett. 2010;20:5147–5152. - PubMed
    1. King R. W. Klabe R. M. Reid C. D. Erickson-Viitanen S. K. Antimicrob. Agents Chemother. 2002;46:1640–1646. - PMC - PubMed
    2. Corbett J. W. Ko S. S. Rodgers J. D. Jeffrey S. Bacheler L. T. Klabe R. M. Diamond S. Lai C.-M. Rabel S. R. Saye J. A. Adams S. P. Trainor G. L. Anderson P. S. Erickson-Viitanen S. K. Antimicrob. Agents Chemother. 1999;43:2893–2897. - PMC - PubMed
    3. Corbett J. W. Ko S. S. Rodgers J. D. Gearhart L. A. Magnus N. A. Bacheler L. T. Diamond S. Jeffrey S. Klabe R. M. Cordova B. C. Garber S. Logue K. Trainor G. L. Anderson P. S. Erickson-Viitanen S. K. J. Med. Chem. 2000;43:2019–2030. - PubMed
    1. Li W. J. Li Q. Liu D. L. Ding M. W. J. Agric. Food Chem. 2013;61:1419–1426. - PubMed
    1. Verghese P. S. Schleiss M. R. Drugs Future. 2013;38:291–298. - PMC - PubMed
    2. Goldner T. Hewlett G. Ettischer N. Ruebsamen-Schaeff H. Zimmermann H. Lischka P. J. Virol. 2011;85:10884–10893. - PMC - PubMed
    1. Pandey V. K. Kumar M. A. Trivedi N. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008;47B:1910–1914.
    2. Seitz W. Geneste H. Backfisch G. Delzer J. Graef C. Hornberger W. Kling A. Subkowski T. Zimmermann N. Bioorg. Med. Chem. Lett. 2008;18:527–531. - PubMed
    3. Rhim H. Lee Y. S. Park S. J. Chung B. Y. Lee J. Y. Bioorg. Med. Chem. Lett. 2005;15:283–286. - PubMed
    4. Xie T. Xiao Y. Zhao S. Hu X.-Q. Xu P.-F. J. Org. Chem. 2016;81:10499–10505. - PubMed
    5. Willwacher J. Rakshit S. Glorius F. Org. Biomol. Chem. 2011;9:4736–4740. - PubMed
    6. Xin Z. Pei Z. Geldem T. V. Jirousek M. Tetrahedron Lett. 2000;41:1147–1150.
    7. Lee Y. S. Lee B. H. Park S. J. Kang S. B. Rhim H. Park J.-Y. Lee J.-H. Jeong S.-W. Lee J. Y. Bioorg. Med. Chem. Lett. 2004;14:3379–3384. - PubMed
    8. Ivachtchenko A. V. Kovalenko S. M. Drushlyak O. G. J. Comb. Chem. 2003;5:775–788. - PubMed
    9. Fukamachi S. Konishi H. Kobayashi K. Synthesis. 2010;10:1593–1598.
    10. Kobayashi K. Yokoi Y. Konishi H. Synthesis. 2011;10:1526–1528.
    11. Kaur B. Kaur R. ARKIVOC. 2007;15:315–323.