Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 1;37(21):6347-6356.
doi: 10.1021/acs.langmuir.1c00617. Epub 2021 May 17.

Cement Interfaces: Current Understanding, Challenges, and Opportunities

Affiliations

Cement Interfaces: Current Understanding, Challenges, and Opportunities

Ozge Heinz et al. Langmuir. .

Abstract

Cement and concrete are rapidly growing in demand and pose many unresolved chemistry questions at particle interfaces, during hydration reactions, regarding the role of electrolytes and organic additives. Solutions through developing greener, more sustainable formulations are needed to reduce the high carbon footprint that amounts to 11% of global CO2 emissions. Cement is a multiphase material composed of calcium silicates, aluminates, and other mineral phases, produced from natural and low-cost industrial sources, which undergoes complex hydration reactions. This perspective highlights current research challenges and opportunities for new chemistry insight, including intriguing colloid and interface science problems that involve mineral surfaces, electrolytes, polymers, and hydration reactions. Specifically, we discuss (1) characteristics of cement phases, supplementary cementitious materials, and other constituents, (2) hydration reactions and the characterization by imaging and NMR spectroscopy, (3) the structure of hydrated cement phases including calcium-silicate-hydrates at different scales, (4) quantitative simulation techniques from the atomic scale to microscale kinetic models, and (5) the function of organic additives. Focusing on new directions, we explain the benefits of integrating knowledge from inorganic chemistry, acid-base chemistry, polymer chemistry, reaction mechanisms, and theory to describe mesoscale cement properties and bulk properties upon manufacturing.

PubMed Disclaimer

LinkOut - more resources