Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul:258:109106.
doi: 10.1016/j.vetmic.2021.109106. Epub 2021 May 8.

H7N9 influenza virus-like particle based on BEVS protects chickens from lethal challenge with highly pathogenic H7N9 avian influenza virus

Affiliations

H7N9 influenza virus-like particle based on BEVS protects chickens from lethal challenge with highly pathogenic H7N9 avian influenza virus

Jun Li et al. Vet Microbiol. 2021 Jul.

Abstract

H7N9 avian influenza virus poses a dual threat to both poultry industry and public health. Therefore, it is highly urgent to develop an effective vaccine to reduce its pandemic potential. Virus-like particles (VLP) represent an effective approach for pandemic vaccine development. In this study, a recombinant baculovirus co-expressing the HA, NA and M1 genes of the H7N9 virus was constructed for generation of H7N9 VLP. Single immunization of chickens with 15 μg of the VLP or the commercial whole virus inactivated vaccine stimulates high hemagglutination inhibition, virus neutralizing and HA-specific IgY antibodies. Moreover, the antiserum had a good cross-reactivity with H7N9 field strains isolated in different years. Within 14 days after a lethal challenge with highly pathogenic (HP) H7N9 virus, no clinical symptoms and death were observed in the vaccinated chickens, and no virus was recovered from the organs. Compared to the non-vaccinated chickens, H7N9 VLP significantly reduced the proportion of animals shedding virus. Only 30 % of the VLP-vaccinated birds shed virus, whereas virus shedding was detected in 50 % of the chickens immunized with the commercial vaccine. Moreover, both vaccines dramatically alleviated pulmonary lesions caused by HP H7N9 virus, with a greater degree observed for the VLP. Altogether, our results indicated that the H7N9 VLP vaccine candidate confers a complete clinical protection against a lethal challenge with HP H7N9 virus, significantly inhibits virus shedding and abolishes viral replication in chickens. The VLP generated in this study represents a promising alternative strategy for the development of novel H7N9 avian influenza vaccines for chickens.

Keywords: Chicken; H7N9 influenza virus; Recombinant baculovirus; Sf9 cells; Vaccine; Virus-like particles.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources