Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;103(4-1):042906.
doi: 10.1103/PhysRevE.103.042906.

Relative importance of electrostatic and van der Waals forces in particle adhesion to rough conducting surfaces

Affiliations

Relative importance of electrostatic and van der Waals forces in particle adhesion to rough conducting surfaces

Siddharth Rajupet et al. Phys Rev E. 2021 Apr.

Abstract

It is commonly assumed that van der Waals forces dominate adhesion in dry systems and electrostatic forces are of second order importance and can be safely neglected. This is unambiguously the case for particles interacting with flat surfaces. However, all surfaces have some degree of roughness. Here we calculate the electrostatic and van der Waals contributions to adhesion for a polarizable particle contacting a rough conducting surface. For van der Waals forces, surface roughness can diminish the force by several orders of magnitude. In contrast, for electrostatic forces, surface roughness affects the force only slightly, and in some regimes it actually increases the force. Since van der Waals forces decrease far more strongly with surface roughness than electrostatic forces, surface roughness acts to increase the relative importance of electrostatic forces to adhesion. We find that for a particle contacting a rough conducting surface, electrostatic forces can be dominant for particle sizes as small as ∼1-10 μm.

PubMed Disclaimer

Similar articles

Cited by