Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 8;11(3):e046282.
doi: 10.1136/bmjopen-2020-046282.

Diagnostic accuracy of subjective dyspnoea in detecting hypoxaemia among outpatients with COVID-19: a retrospective cohort study

Affiliations

Diagnostic accuracy of subjective dyspnoea in detecting hypoxaemia among outpatients with COVID-19: a retrospective cohort study

Linor Berezin et al. BMJ Open. .

Abstract

Objectives: The majority of patients with mild-to-moderate COVID-19 can be managed using virtual care. Dyspnoea is challenging to assess remotely, and the accuracy of subjective dyspnoea measures in capturing hypoxaemia have not been formally evaluated for COVID-19. We explored the accuracy of subjective dyspnoea in diagnosing hypoxaemia in COVID-19 patients.

Methods: This is a retrospective cohort study of consecutive outpatients with COVID-19 who met criteria for home oxygen saturation monitoring at a university-affiliated acute care hospital in Toronto, Canada from 3 April 2020 to 13 September 2020. Dyspnoea measures were treated as diagnostic tests, and we determined their sensitivity (SN), specificity (SP), negative/positive predictive value (NPV/PPV) and positive/negative likelihood ratios (+LR/-LR) for detecting hypoxaemia. In the primary analysis, hypoxaemia was defined by oxygen saturation <95%; the diagnostic accuracy of subjective dyspnoea was also assessed across a range of oxygen saturation cutoffs from 92% to 97%.

Results: During the study period, 89/501 (17.8%) of patients met criteria for home oxygen saturation monitoring, and of these 17/89 (19.1%) were diagnosed with hypoxaemia. The presence/absence of dyspnoea had limited accuracy for diagnosing hypoxaemia, with SN 47% (95% CI 24% to 72%), SP 80% (95% CI 68% to 88%), NPV 86% (95% CI 75% to 93%), PPV 36% (95% CI 18% to 59%), +LR 2.4 (95% CI 1.2 to 4.7) and -LR 0.7 (95% CI 0.4 to 1.1). The SN of dyspnoea was 50% (95% CI 19% to 81%) when a cut-off of <92% was used to define hypoxaemia. A modified Medical Research Council dyspnoea score >1 (SP 98%, 95% CI 88% to 100%), Roth maximal count <12 (SP 100%, 95% CI 75% to 100%) and Roth counting time <8 s (SP 93%, 95% CI 66% to 100%) had high SP that could be used to rule in hypoxaemia, but displayed low SN (≤50%).

Conclusions: Subjective dyspnoea measures have inadequate accuracy for ruling out hypoxaemia in high-risk patients with COVID-19. Safe home management of patients with COVID-19 should incorporate home oxygenation saturation monitoring.

Keywords: COVID-19; infectious diseases; public health.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1
Figure 1
Comparison of SpO2 and measures of subjective dyspnoea. (A) Violin plots showing the distribution of SpO2 (%) values in COVID-19 outpatients who reported dyspnoea and those who did not. (B) Violin plots showing the distribution of SpO2 (%) values in COVID-19 outpatients with various mMRC dyspnoea scale scores. The width of each plot is proportional to the number of patients with the respective SpO2 (represented by black dots). The median SpO2 is indicated by the central horizontal black line and the dotted lines correspond to the IQR. mMRC, modified Medical Research Council; SpO2, oxygen saturation.

References

    1. World Health Organization . Coronavirus disease 2019 (COVID-19) Weekly epidemiological update, 2021. Available: https://www.who.int/publications/m/item/weekly-epidemiological-update---...
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 2020;323:1239–42. 10.1001/jama.2020.2648 - DOI - PubMed
    1. Guan W-J, Ni Z-Y, Hu Y, et al. . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. 10.1056/NEJMoa2002032 - DOI - PMC - PubMed
    1. Deng Y, Liu W, Liu K, Yan D, Wei L, Kui L, et al. . Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J 2020;133:1261-1267. 10.1097/CM9.0000000000000824 - DOI - PMC - PubMed
    1. Chen T, Wu D, Chen H, et al. . Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091. 10.1136/bmj.m1091 - DOI - PMC - PubMed