Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 7;27(17):1905-1919.
doi: 10.3748/wjg.v27.i17.1905.

Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-19 infection treatment

Affiliations
Review

Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-19 infection treatment

Cinzia Maria Chinnici et al. World J Gastroenterol. .

Abstract

Due to their immunomodulatory potential and release of trophic factors that promote healing, mesenchymal stromal cells (MSCs) are considered important players in tissue homeostasis and regeneration. MSCs have been widely used in clinical trials to treat multiple conditions associated with inflammation and tissue damage. Recent evidence suggests that most of the MSC therapeutic effects are derived from their secretome, including the extracellular vesicles, representing a promising approach in regenerative medicine application to treat organ failure as a result of inflammation/fibrosis. The recent outbreak of respiratory syndrome coronavirus, caused by the newly identified agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has forced scientists worldwide to use all available instruments to fight the infection, including the inflammatory cascade caused by this pandemic disease. The use of MSCs is a valid approach to combat organ inflammation in different compartments. In addition to the lungs, which are considered the main inflammatory target for this virus, other organs are compromised by the infection. In particular, the liver is involved in the inflammatory response to SARS-CoV-2 infection, which causes organ failure, leading to death in coronavirus disease 2019 (COVID-19) patients. We herein summarize the current implications derived from the use of MSCs and their soluble derivatives in COVID-19 treatment, and emphasize the potential of MSC-based therapy in this clinical setting.

Keywords: COVID-19; Inflammation; Mesenchymal stromal cell; Organ failure; SARS-CoV-2; Transplantation.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declare having no conflicts of interest.

Figures

Figure 1
Figure 1
Schematic representation of severe acute respiratory syndrome coronavirus 2 impact on lungs and liver. Cytokine storm with the cascade triggered by natural killer (NK) cells, T helper (Th) cell and monocytes, and the production of inflammatory cytokines (interleukin 1 beta [IL-1b], Il-2, IL-6, IL-8, IL-10, Il-17, interferons [IFNs], IFN-induced protein 10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor [GM-CSF]). The infection in the liver causes an increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and bilirubin, and a decrease in albumin. Mesenchymal stromal cells (MSCs) can reduce the inflammatory response by extracellular vesicle (EV) release (large ≥ 200 nm and small ≤ 150 nm). ER: Endoplasmic reticulum; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.

References

    1. Guicciardi ME, Gores GJ. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 2005;54:1024–1033. - PMC - PubMed
    1. Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol. 2018;10:1–7. - PMC - PubMed
    1. Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther. 2018;9:227. - PMC - PubMed
    1. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295. - PMC - PubMed
    1. Miranda JP, Filipe E, Fernandes AS, Almeida JM, Martins JP, De la Fuente A, Abal M, Barcia RN, Cruz P, Cruz H, Castro M, Santos JM. The Human Umbilical Cord Tissue-Derived MSC Population UCX(®) Promotes Early Motogenic Effects on Keratinocytes and Fibroblasts and G-CSF-Mediated Mobilization of BM-MSCs When Transplanted In Vivo. Cell Transplant. 2015;24:865–877. - PubMed