Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 18;22(5):157.
doi: 10.1208/s12249-021-02006-w.

[10]-Gingerol-Loaded Nanoemulsion and its Biological Effects on Triple-Negative Breast Cancer Cells

Affiliations

[10]-Gingerol-Loaded Nanoemulsion and its Biological Effects on Triple-Negative Breast Cancer Cells

Ideli Zanesco-Fontes et al. AAPS PharmSciTech. .

Abstract

The apoptotic, cytotoxic, and cytostatic activities for [10]-gingerol in triple-negative breast cancer cells (TNBCs) were already reported. However, despite these important antitumor activities, the compound has the disadvantage to have a hydrophobic characteristic, hindering in vivo administration. To surpass this issue, in this study we have created a [10]-gingerol-loaded nanoemulsion (10GNE) in order to increase the stability and solubility of the compound. The nanoemulsion was characterized and tested for its cytotoxic, cytostatic, and apoptotic effects on a panel of murine and human TNBC cell lines, as well as non-tumor cells, and compared with a [10]-gingerol-free nanoemulsion (NE) and with [10]-gingerol itself. Except for the murine 4T1.13 cell line, the IC50 of the free 10G molecule, after 72 h of incubation, was higher in all cell lines tested, both murine and human, demonstrating therefore the efficacy of the 10GNE regarding cytotoxicity. In murine tumor cells, 60 μM 10GNE was able to arrest cell cycle at sub-G0 phase and induce apoptosis, leading to 48% and 78% of total cell death in 4T1.13 and 4T1Br4 murine tumor cells, respectively. This represents an improvement compared to 10G-free molecule that only induced 74% of total apoptosis at 100 μM in 4T1Br4 cells. Taken together, our results show that nanoformulation preserved the [10]-gingerol cytotoxic and cytostatic properties and improved its apoptotic function on murine TNBC cell lines. These data open new perspectives to a more suitable drug-delivery approach for [10]-gingerol for TNBC treatment that should be further demonstrated using in vivo assays.

Keywords: [10]-gingerol; formulation; nanoemulsion; triple-negative breast cancer.

PubMed Disclaimer

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. - DOI
    1. Hon JD, Singh B, Sahin A, Du G, Wang J, Wang VY, et al. Breast cancer molecular subtypes: from TNBC to QNBC. Am J Cancer Res. 2016;6(9):1864–72. - PubMed - PMC
    1. Kumar P, Aggarwal R. An overview of triple-negative breast cancer. Arch Gynecol Obstet. 2016;293(2):247–69. - DOI
    1. Spini A, Donnini S, Pantziarka P, Crispino S, Ziche M. Repurposing of drugs for triple negative breast cancer: an overview. Ecancermedicalscience. 2020;14:1071. - DOI
    1. Prouse J. The impact of methods of information on chemotherapy-related side effects. Clin J Oncol Nurs. 2010;14(2):206–11. - DOI

MeSH terms

LinkOut - more resources