Unraveling the predictive role of temperature in the gut microbiota of the sea urchin Echinometra sp. EZ across spatial and temporal gradients
- PMID: 34008895
- DOI: 10.1111/mec.15990
Unraveling the predictive role of temperature in the gut microbiota of the sea urchin Echinometra sp. EZ across spatial and temporal gradients
Abstract
Shifts in microbial communities represent a rapid response mechanism for host organisms to respond to changes in environmental conditions. Therefore, they are likely to be important in assisting the acclimatization of hosts to seasonal temperature changes as well as to variation in temperatures across a species' range. The Persian/Arabian Gulf is the world's warmest sea, with large seasonal fluctuations in temperature (20℃ - 37℃) and is connected to the Gulf of Oman which experiences more typical oceanic conditions (<32℃ in the summer). This system is an informative model for understanding how symbiotic microbial assemblages respond to thermal variation across temporal and spatial scales. Here, we elucidate the role of temperature on the microbial gut community of the sea urchin Echinometra sp. EZ and identify microbial taxa that are tightly correlated with the thermal environment. We generated two independent datasets with a high degree of geographic and temporal resolution. The results show that microbial communities vary across thermally variable habitats, display temporal shifts that correlate with temperature, and can become more disperse as temperatures rise. The relative abundances of several ASVs significantly correlate with temperature in both independent datasets despite the >300 km distance between the furthest sites and the extreme seasonal variations. Notably, over 50% of the temperature predictive ASVs identified from the two datasets belonged to the family Vibrionaceae. Together, our results identify temperature as a robust predictor of community-level variation and highlight specific microbial taxa putatively involved in the response to thermal environment.
Keywords: Echinometra; Persian/Arabian Gulf; gut microbiota; microbial ecology; sea urchin; thermal gradient.
© 2021 John Wiley & Sons Ltd.
Similar articles
-
Population Genomic Analyses of the Sea Urchin Echinometra sp. EZ across an Extreme Environmental Gradient.Genome Biol Evol. 2020 Oct 1;12(10):1819-1829. doi: 10.1093/gbe/evaa150. Genome Biol Evol. 2020. PMID: 32697837 Free PMC article.
-
A Chromosome-level Genome Assembly of the Highly Heterozygous Sea Urchin Echinometra sp. EZ Reveals Adaptation in the Regulatory Regions of Stress Response Genes.Genome Biol Evol. 2022 Oct 7;14(10):evac144. doi: 10.1093/gbe/evac144. Genome Biol Evol. 2022. PMID: 36161313 Free PMC article.
-
The complete mitochondrial genome of the sea urchin, Echinometra sp. EZ.Mitochondrial DNA B Resour. 2018 Nov 14;3(2):1225-1227. doi: 10.1080/23802359.2018.1532335. Mitochondrial DNA B Resour. 2018. PMID: 33474471 Free PMC article.
-
The potential role of the gut microbiota in shaping host energetics and metabolic rate.J Anim Ecol. 2020 Nov;89(11):2415-2426. doi: 10.1111/1365-2656.13327. Epub 2020 Sep 28. J Anim Ecol. 2020. PMID: 32858775 Review.
-
Hotter days, stronger immunity? Exploring the impact of rising temperatures on insect gut health and microbial relationships.Curr Opin Insect Sci. 2023 Oct;59:101096. doi: 10.1016/j.cois.2023.101096. Epub 2023 Jul 28. Curr Opin Insect Sci. 2023. PMID: 37517588 Review.
Cited by
-
Variable phylosymbiosis and cophylogeny patterns in wild fish gut microbiota of a large subtropical river.mSphere. 2025 Apr 29;10(4):e0098224. doi: 10.1128/msphere.00982-24. Epub 2025 Mar 28. mSphere. 2025. PMID: 40152595 Free PMC article.
-
Effect of long-term temperature stress on the intestinal microbiome of an invasive snail.Front Microbiol. 2022 Aug 29;13:961502. doi: 10.3389/fmicb.2022.961502. eCollection 2022. Front Microbiol. 2022. PMID: 36106079 Free PMC article.
-
The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution.Environ Microbiome. 2024 Oct 13;19(1):74. doi: 10.1186/s40793-024-00620-2. Environ Microbiome. 2024. PMID: 39397007 Free PMC article.
-
Pigmentation biosynthesis influences the microbiome in sea urchins.Proc Biol Sci. 2022 Aug 31;289(1981):20221088. doi: 10.1098/rspb.2022.1088. Epub 2022 Aug 17. Proc Biol Sci. 2022. PMID: 35975446 Free PMC article.
-
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts.FEMS Microbiol Ecol. 2025 Jan 28;101(2):fiaf006. doi: 10.1093/femsec/fiaf006. FEMS Microbiol Ecol. 2025. PMID: 39809570 Free PMC article.
References
REFERENCES
-
- Aissa, F. B., Postec, A., Erauso, G., Payri, C., Pelletier, B., Hamdi, M., & Fardeau, M.-L. (2014). Vallitalea pronyensis sp. nov., isolated from a marine alkaline hydrothermal chimney. International Journal of Systematic and Evolutionary Microbiology, 64(4), 1160-1165.
-
- Andersen, K. S., Kirkegaard, R. H., Karst, S. M., & Albertsen, M. (2018). Ampvis2: an R Package to Analyse and Visualise 16S rRNA Amplicon Data. bioRxiv, 299537.
-
- Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9(6), 683-693. https://doi.org/10.1111/j.1461-0248.2006.00926.x
-
- Bayer, K., Schmitt, S., & Hentschel, U. (2008). Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environmental Microbiology, 10(11), 2942-2955.
-
- Beleneva, I., & Kukhlevskii, A. (2010). Characterization of Vibrio gigantis and Vibrio pomeroyi isolated from invertebrates of Peter the Great Bay Sea of Japan. Microbiology, 79(3), 402-407. https://doi.org/10.1134/S0026261710030173
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous