Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 15:600:118-126.
doi: 10.1016/j.jcis.2021.05.004. Epub 2021 May 5.

Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability

Affiliations

Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability

Wei Xiong et al. J Colloid Interface Sci. .

Abstract

Due to the inherent differences in surface tension between water and oil, it is a challenge to fabricate air superhydrophilic-superoleophobic materials despite their promising potential in the field of oil/water separation. Herein, a facile approach is developed to fabricate air superhydrophilic-superoleophobic SiO2 coating by combination of controllable modifying SiO2 nanoparticle surface by both hydrophilic groups (i.e., -OH groups) and oleophobic groups (i.e., fluorinated groups) with constructing porous and hierarchical structures. Hydroxyl-modified SiO2 nanoparticles (NPs) are synthesized using a base-catalysed procedure in the presence of ammonia or NaOH. Chitosan quaternary ammonium salt (HACC) is introduced to bind SiO2 by forming a unique hydrogen bond between HACC and -OH, followed by adding pentadecafluorooctanoic acid (PFOA) to complex with HACC to form fluorinated groups. The SiO2 coatings are fabricated on various substrates (e.g., glass, foam and Cu mesh) by spraying procedure and characterized using SEM, FTIR, XPS, etc. The contact angles of oils (e.g., pump oil, castor oil, corn oil, hexadecane and bean oil) and water on the coatings are over 150° and close to 0°, respectively. By optimization, the representative SiO2-coated Cu mesh displayed high-efficiency of 99.2% in separating water from mixture of water/pump oil, and high penetration flux of 1.41 × 104 L·m-2 ·h-1. Besides, the coating maintains its superhydrophilic-superoleophobic properties even after 110 cycles of sandpaper abrasion or after being immersed in water for 3 h. After 20 cycles of oil/water separation, the coating retains separation efficiency up to 97.93%. This study provides a new and universal protocol to fabricate unique superwetting surfaces with effective oil/water separation performance, long-term durability and outstanding reusability.

Keywords: Air superhydrophilicity-superoleophobicity; Coatings; Mechanical stability; Oil/water separation.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The author declare that there is no conflict of interest.

LinkOut - more resources