Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May;593(7859):351-361.
doi: 10.1038/s41586-021-03382-w. Epub 2021 May 19.

The data-driven future of high-energy-density physics

Affiliations
Review

The data-driven future of high-energy-density physics

Peter W Hatfield et al. Nature. 2021 May.

Abstract

High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally. Here we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proved far too nonlinear for human researchers. From a fundamental perspective, our understanding can be improved by the way in which machine learning models can rapidly discover complex interactions in large datasets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to approximately daily), thus moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we suggest proposals for the community in terms of research design, training, best practice and support for synthetic diagnostics and data analysis.

PubMed Disclaimer

References

    1. Rose, S. Set the controls for the heart of the Sun. Contemp. Phys. 45, 109–121 (2004). - DOI
    1. Spears, B. K. et al. Deep learning: a guide for practitioners in the physical sciences. Phys. Plasmas 25, 080901 (2018). This tutorial paper gives an introduction to scientific machine learning, with examples taken from ICF research. - DOI
    1. Wang, Z., Peterson, J. L., Rea, C. & Humphreys, D. Special issue on machine learning, data science, and artificial intelligence in plasma research. IEEE Trans. Plasma Sci. 48, 1–2 (2020). - DOI
    1. Colvin, J. & Larsen, J. Extreme Physics (Cambridge Univ. Press, 2013).
    1. Graziani, F., Desjarlais, M. P., Redmer, R. & Trickey, S. B. (eds) Frontiers and Challenges in Warm Dense Matter Lecture Notes in Computational Science and Engineering Vol. 96 (Springer, 2014).

Publication types

LinkOut - more resources