Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 3:12:613197.
doi: 10.3389/fgene.2021.613197. eCollection 2021.

A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs

Affiliations
Review

A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs

Dan Li et al. Front Genet. .

Abstract

MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3' end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.

Keywords: activity; cross-kingdom regulation; gene expression; microRNA; plant.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
The representative plant-derived miRNAs with cross-kingdom bioactivity and their role in cross-kingdom communications. Note: The information in yellow circle contains miRNAs derived from specific plants (black text) and their main targets (red text). Some conservative miRNA family can be found in many different plant species. Other information like miRNA sequence and references can be found in Table 1. ETF3, Endothelial transcription factor 3; HBV, Hepatitis B virus; JAMA, Junctional adhesion molecule A; LDLRAP 1, Low-density lipoprotein receptor adapter protein 1; Mfn1, Mitochondrial fusion requires fusion protein 1; TCF7, Transcription factor 7; ZNF-691, zinc-finger transcription factor 691.

References

    1. Abla M., Sun H., Li Z., Wei C., Gao F., Zhou Y., et al. (2019). Identification of miRNAs and Their Response to Cold Stress in Astragalus Membranaceus. Biomol. 9 1–20. 10.3390/biom9050182 - DOI - PMC - PubMed
    1. Akbari Kordkheyli V., Khonakdar Tarsi A., Mishan M. A., Tafazoli A., Bardania H., Zarpou S., et al. (2019). Effects of quercetin on microRNAs: a mechanistic review. J. Cell Biochem. 120 12141–12155. 10.1002/jcb.28663 - DOI - PubMed
    1. Ameres S. L., Zamore P. D. (2013). Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14 475–488. 10.1038/nrm3611 - DOI - PubMed
    1. Avsar B., Zhao Y., Li W., Lukiw W. J. (2020). Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3’-Untranslated Region (3’-UTR) of the mRNA Encoding the Neurologically Relevant, Zinc-Finger Transcription Factor ZNF-691. Cell Mol. Neurobiol. 40 179–188. 10.1007/s10571-019-00729-w - DOI - PMC - PubMed
    1. Barozai M. Y. K., Din M. (2017). “Initial screening of plant most conserved MicroRNAs targeting infectious viruses: HBV and HCV,” in 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (New York: IEEE; ), 10.1109/IBCAST.2017.7868055 - DOI