Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Aug 18;943(2):288-96.
doi: 10.1016/0005-2736(88)90560-3.

Inactivation of the intestinal uptake system for beta-lactam antibiotics by diethylpyrocarbonate

Affiliations
Comparative Study

Inactivation of the intestinal uptake system for beta-lactam antibiotics by diethylpyrocarbonate

W Kramer et al. Biochim Biophys Acta. .

Abstract

The uptake system for beta-lactam antibiotics in the rabbit small intestine was investigated using brush-border membrane vesicles. After treatment of membrane vesicles with the reagent diethylpyrocarbonate (DEP), the uptake of orally active beta-lactam antibiotics with an alpha-amino group in the substituent at position 6 or 7 of the penam or cephem nucleus was significantly inhibited, whereas DEP-treatment had no inhibitory effect on the uptake of beta-lactam antibiotics without an alpha-amino group. The kinetic analysis revealed an apparent competitive inhibition indicating a decreased affinity of the transport system for alpha-amino-beta-lactam antibiotics. Substrates of the intestinal dipeptide transport system - dipeptides and alpha-amino-beta-lactam antibiotics - could protect the transport system from irreversible inhibition by DEP, whereas beta-lactam antibiotics without an alpha-amino group as well as amino acids or bile acids had no effect. Incubation of DEP-treated vesicles with hydroxylamine led to a partial restoration of the transport activity indicating that DEP may have led to a modification of a histidine residue of the transport protein. From the data presented we conclude that a specific interaction of the alpha-amino group in the substituent at position 6 or 7 of the penam or cephem nucleus presumably with a histidine residue of the transport protein is involved in the translocation process of orally active alpha-amino-beta-lactam antibiotics across the intestinal brush-border membrane.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources