Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 21;9(5):e14755.
doi: 10.2196/14755.

Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study

Affiliations

Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study

Qiong Pan et al. JMIR Med Inform. .

Abstract

Background: Disk herniation and disk bulge are two common disorders of lumbar intervertebral disks (IVDs) that often result in numbness, pain in the lower limbs, and lower back pain. Magnetic resonance (MR) imaging is one of the most efficient techniques for detecting lumbar diseases and is widely used for making clinical diagnoses at hospitals. However, there is a lack of efficient tools for effectively interpreting massive amounts of MR images to meet the requirements of many radiologists.

Objective: The aim of this study was to present an automatic system for diagnosing disk bulge and herniation that saves time and can effectively and significantly reduce the workload of radiologists.

Methods: The diagnosis of lumbar vertebral disorders is highly dependent on medical images. Therefore, we chose the two most common diseases-disk bulge and herniation-as research subjects. This study is mainly about identifying the position of IVDs (lumbar vertebra [L] 1 to L2, L2-L3, L3-L4, L4-L5, and L5 to sacral vertebra [S] 1) by analyzing the geometrical relationship between sagittal and axial images and classifying axial lumbar disk MR images via deep convolutional neural networks.

Results: This system involved 4 steps. In the first step, it automatically located vertebral bodies (including the L1, L2, L3, L4, L5, and S1) in sagittal images by using the faster region-based convolutional neural network, and our fourfold cross-validation showed 100% accuracy. In the second step, it spontaneously identified the corresponding disk in each axial lumbar disk MR image with 100% accuracy. In the third step, the accuracy for automatically locating the intervertebral disk region of interest in axial MR images was 100%. In the fourth step, the 3-class classification (normal disk, disk bulge, and disk herniation) accuracies for the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 IVDs were 92.7%, 84.4%, 92.1%, 90.4%, and 84.2%, respectively.

Conclusions: The automatic diagnosis system was successfully built, and it could classify images of normal disks, disk bulge, and disk herniation. This system provided a web-based test for interpreting lumbar disk MR images that could significantly improve diagnostic efficiency and standardized diagnosis reports. This system can also be used to detect other lumbar abnormalities and cervical spondylosis.

Keywords: deep learning; disk bulge; disk herniation; image classification; object localization.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
Examples of lumbar MR images. (A) A sagittal lumbar MR image in which 5 IVDs are labeled. (B) A sagittal lumbar MR image in which 6 vertebral bodies are enclosed in boxes. (C) An axial lumbar MR image of a normal disk. (D) An axial lumbar MR image of disk bulge. (E) An axial lumbar MR image of disk herniation. L: lumbar vertebra; MR: magnetic resonance; S: sacral.
Figure 2
Figure 2
Overall diagnosis system. This system consists of 4 steps. First, vertebral bodies (L1, L2, L3, L4, and L5) in sagittal lumbar magnetic resonance images were automatically located by using the faster R-CNN, and the middle point of each vertebral body was calculated. Second, the axial images were grouped into 5 categories. Each category corresponded to an intervertebral disk (ie, the L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 intervertebral disks). Third, the intervertebral disk regions of interest in each axial MR image were segmented using the faster R-CNN. Finally, in each category, the region-of-interest images were classified as images of normal disks, disk bulge, and disk herniation using ResNet101. L: lumbar vertebra; R-CNN: region-based convolutional neural network; S: sacral.
Figure 3
Figure 3
The intervertebral disks (from L1-L2 to L5-S1) in each axial image were located by calculating directed distances. The red dot shows the middle point of each vertebral body in a sagittal image. The blue line depicts the directed distance from the red dot to a specific axial image. L: lumbar vertebra; S: sacral.
Figure 4
Figure 4
Results of the 3-class classification (normal disk, disk bulge, and disk herniation). (A) The average accuracies of the classification system (calculated using ResNet101) for the following five categories: L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1. The rows and columns of all heat maps represent ground truth labels and predicted labels, respectively. The x-axis shows the five intervertebral disks. (B) A heat map of the classification accuracies for category L1-L2. The color scale expresses the accuracy. (C) A heat map of the classification accuracies for category L2-L3. The color scale expresses the accuracy. (D) A heat map of the classification accuracies for category L3-L4. The color scale expresses the accuracy. (E) A heat map of the classification accuracies for category L4-L5. The color scale expresses the accuracy. (F) A heat map of the classification accuracies for category L5-S1. The color scale expresses the accuracy. L: lumbar vertebra; S: sacral.
Figure 5
Figure 5
Appearance and functions of the reports of the web-based automatic diagnostic system. (A) This is the page for uploading a folder. (B) Diagnostic results in tabular form. (C) The diagnostic report in the Unified format. LDP: lumbar disk protrusion.

Similar articles

Cited by

References

    1. Vos T, Flaxman A, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon J, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng ATA, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FGR, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KMV, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJC, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SRM, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AKM, Zheng ZJ, Zonies D, Lopez AD, Murray CJL, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec 15;380(9859):2163–2196. doi: 10.1016/S0140-6736(12)61729-2. http://europepmc.org/abstract/MED/23245607 - DOI - PMC - PubMed
    1. Yang H, Liu H, Li Z, Zhang K, Wang J, Wang H, Zheng Z. Low back pain associated with lumbar disc herniation: role of moderately degenerative disc and annulus fibrous tears. Int J Clin Exp Med. 2015 Feb 15;8(2):1634–1644. http://europepmc.org/abstract/MED/25932092 - PMC - PubMed
    1. Li W, Yang Y, Zhang K, Long E, He L, Zhang L, Zhu Y, Chen C, Liu Z, Wu X, Yun D, Lv J, Liu Y, Liu X, Lin H. Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nat Biomed Eng. 2020 Aug;4(8):767–777. doi: 10.1038/s41551-020-0577-y. - DOI - PubMed
    1. Wang L, Zhang K, Liu X, Long E, Jiang J, An Y, Zhang J, Liu Z, Lin Z, Li X, Chen J, Cao Q, Li J, Wu X, Wang D, Li W, Lin H. Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Sci Rep. 2017 Jan 31;7:41545. doi: 10.1038/srep41545. doi: 10.1038/srep41545. - DOI - DOI - PMC - PubMed
    1. Talo M, Baloglu UB, Yıldırım Ö, Rajendra Acharya U. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res. 2019 May;54:176–188. doi: 10.1016/j.cogsys.2018.12.007. - DOI

LinkOut - more resources