Metasurface-based key for computational imaging encryption
- PMID: 34020956
- PMCID: PMC8139587
- DOI: 10.1126/sciadv.abg0363
Metasurface-based key for computational imaging encryption
Abstract
Optical metasurfaces can offer high-quality multichannel displays by modulating different degrees of freedom of light, demonstrating great potential in the next generation of optical encryption and anti-counterfeiting. Different from the direct imaging modality of metasurfaces, single-pixel imaging (SPI) as a typical computational imaging technique obtains the object image from a decryption-like computational process. Here, we propose an optical encryption scheme by introducing metasurface-images (meta-images) into the encoding and decoding processes as the keys of SPI encryption. Different high-quality meta-images generated by a dual-channel Malus metasurface play the role of keys to encode multiple target images and retrieve them following the principle of SPI. Our work eliminates the conventional digital transmission process of keys in SPI encryption, enables the reusability of a single metasurface in different encryption processes, and thereby paves the way toward a high-security optical encryption between direct and indirect imaging methods.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures





References
-
- Liu Y., Zhang X., Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011). - PubMed
-
- Genevet P., Capasso F., Holographic optical metasurfaces: A review of current progress. Rep. Prog. Phys. 78, 024401 (2015). - PubMed
-
- Zhang L., Mei S., Huang K., Qiu C. -W., Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).
-
- Chen H. -T., Taylor A. J., Yu N., A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 79, 076401 (2016). - PubMed
-
- Ding F., Pors A., Bozhevolnyi S. I., Gradient metasurfaces: A review of fundamentals and applications. Rep. Prog. Phys. 81, 026401 (2017). - PubMed
LinkOut - more resources
Full Text Sources