OCT imaging of rod mitochondrial respiration in vivo
- PMID: 34024141
- PMCID: PMC8718256
- DOI: 10.1177/15353702211013799
OCT imaging of rod mitochondrial respiration in vivo
Abstract
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light-dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.
Keywords: Diffusion MRI; mitochondria; optical coherence tomography; photoreceptors.
Conflict of interest statement
Figures





Similar articles
-
Preventing diabetic retinopathy by mitigating subretinal space oxidative stress in vivo.Vis Neurosci. 2020 Jun 15;37:E002. doi: 10.1017/S0952523820000024. Vis Neurosci. 2020. PMID: 32536351 Free PMC article. Review.
-
Light-evoked deformations in rod photoreceptors, pigment epithelium and subretinal space revealed by prolonged and multilayered optoretinography.Nat Commun. 2024 Jun 19;15(1):5156. doi: 10.1038/s41467-024-49014-5. Nat Commun. 2024. PMID: 38898002 Free PMC article.
-
Rod Photoreceptor Neuroprotection in Dark-Reared Pde6brd10 Mice.Invest Ophthalmol Vis Sci. 2020 Nov 2;61(13):14. doi: 10.1167/iovs.61.13.14. Invest Ophthalmol Vis Sci. 2020. PMID: 33156341 Free PMC article.
-
Functional regulation of an outer retina hyporeflective band on optical coherence tomography images.Sci Rep. 2021 May 13;11(1):10260. doi: 10.1038/s41598-021-89599-1. Sci Rep. 2021. PMID: 33986362 Free PMC article.
-
[Pathophysiology of macular diseases--morphology and function].Nippon Ganka Gakkai Zasshi. 2011 Mar;115(3):238-74; discussion 275. Nippon Ganka Gakkai Zasshi. 2011. PMID: 21476310 Review. Japanese.
Cited by
-
Do multiple physiological OCT biomarkers indicate age-related decline in rod mitochondrial function in C57BL/6J mice?Front Neurosci. 2023 Nov 17;17:1280453. doi: 10.3389/fnins.2023.1280453. eCollection 2023. Front Neurosci. 2023. PMID: 38046657 Free PMC article.
-
Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system.Biomed Opt Express. 2021 Nov 30;12(12):7849-7871. doi: 10.1364/BOE.439900. eCollection 2021 Dec 1. Biomed Opt Express. 2021. PMID: 35003871 Free PMC article.
-
Crosstalk between the Rod Outer Segments and Retinal Pigmented Epithelium in the Generation of Oxidative Stress in an In Vitro Model.Cells. 2023 Aug 30;12(17):2173. doi: 10.3390/cells12172173. Cells. 2023. PMID: 37681906 Free PMC article.
-
Fast and slow light-induced changes in murine outer retina optical coherence tomography: complementary high spatial resolution functional biomarkers.PNAS Nexus. 2022 Oct 14;1(4):pgac208. doi: 10.1093/pnasnexus/pgac208. eCollection 2022 Sep. PNAS Nexus. 2022. PMID: 36338188 Free PMC article.
-
Intrinsic signal optoretinography of dark adaptation kinetics.Sci Rep. 2022 Feb 15;12(1):2475. doi: 10.1038/s41598-022-06562-4. Sci Rep. 2022. PMID: 35169239 Free PMC article.
References
-
- Barile GR, Pachydaki SI, Tari SR, Lee SE, Donmoyer CM, Ma W, Rong LL, Buciarelli LG, Wendt T, Horig H, Hudson BI, Qu W, Weinberg AD, Yan SF, Schmidt AM. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2005; 46:2916–24 - PubMed
-
- Horio N, Clermont AC, Abiko A, Abiko T, Shoelson BD, Bursell SE, Feener EP. Angiotensin at(1) receptor antagonism normalizes retinal blood flow and acetylcholine-induced vasodilatation in normotensive diabetic rats. Diabetologia 2004; 47:113–23 - PubMed
-
- Johnsen-Soriano S, Garcia-Pous M, Arnal E, Sancho-Tello M, Garcia-Delpech S, Miranda M, Bosch-Morell F, Az-Llopis M, Navea A, Romero FJ. Early lipoic acid intake protects retina of diabetic mice. Free Radic Res 2008; 42:613–7 - PubMed
-
- Midena E, Segato T, Radin S, di Giorgio G, Meneghini F, Piermarocchi S, Belloni AS. Studies on the retina of the diabetic db/db mouse. I. Endothelial cell-pericyte ratio. Ophthalmic Res 1989; 21:106–11 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous