Forecasting Seizure Storms Using Epilepsy Wristband Sensors
- PMID: 34025285
- PMCID: PMC8010866
- DOI: 10.1177/1535759721990062
Forecasting Seizure Storms Using Epilepsy Wristband Sensors
Comment on
-
Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting.Epilepsia. 2020 Dec;61(12):2653-2666. doi: 10.1111/epi.16719. Epub 2020 Oct 11. Epilepsia. 2020. PMID: 33040327
References
-
- Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279–288. doi:10.1016/S1474-4422(18)30038-3 - PubMed
-
- Blachut B, Hoppe C, Surges R, Elger C, Helmstaedter C. Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy Behav. 2017;67:122–127. doi:10.1016/j.yebeh.2016.10.036 - PubMed
-
- Meisel C, El Atrache R, Jackson M, Schubach S, Ufongene C, Loddenkemper T. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia. 2020;61(12):2653–2666. doi:10.1111/epi.16719 - PubMed
-
- Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: a field study. Epilepsia. 2018;59(suppl 1):48–52. doi:10.1111/epi.14051 - PubMed
-
- Regalia G, Onorati F, Lai M, Caborni C, Picard RW. Multimodal wrist-worn devices for seizure detection and advancing research: focus on the Empatica wristbands. Epilepsy Res. 2019;153:79–82. doi:10.1016/j.eplepsyres.2019.02.007 - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources