Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:2317:3-47.
doi: 10.1007/978-1-0716-1472-3_1.

Plastid Genomes of Flowering Plants: Essential Principles

Affiliations

Plastid Genomes of Flowering Plants: Essential Principles

Tracey A Ruhlman et al. Methods Mol Biol. 2021.

Abstract

The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.

Keywords: Angiosperm; DNA recombination; Genome evolution; Inheritance; Intergenic region; Inverted repeat; Phylogeny; Plastome; Replication and repair.

PubMed Disclaimer

References

    1. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251 - PubMed - PMC - DOI
    1. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135 - PubMed - DOI - PMC
    1. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci U S A 100:8828–8833 - PubMed - PMC - DOI
    1. Sheppard AE, Madesis P, Lloyd AH, Day A, Ayliffe MA, Timmis JN (2011) Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus. Plant Mol Biol 76:299–309 - PubMed - DOI - PMC
    1. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374 - PubMed - PMC - DOI

Publication types

LinkOut - more resources