Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors
- PMID: 34032025
- PMCID: PMC8292906
- DOI: 10.1002/advs.202100569
Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors
Abstract
Photodetectors built from conventional bulk materials such as silicon, III-V or II-VI compound semiconductors are one of the most ubiquitous types of technology in use today. The past decade has witnessed a dramatic increase in interest in emerging photodetectors based on perovskite materials driven by the growing demands for uncooled, low-cost, lightweight, and even flexible photodetection technology. Though perovskite has good electrical and optical properties, perovskite-based photodetectors always suffer from nonideal quantum efficiency and high-power consumption. Joint manipulation of electrons and photons in perovskite photodetectors is a promising strategy to improve detection efficiency. In this review, electrical and optical characteristics of typical types of perovskite photodetectors are first summarized. Electrical manipulations of electrons in perovskite photodetectors are discussed. Then, artificial photonic nanostructures for photon manipulations are detailed to improve light absorption efficiency. By reviewing the manipulation of electrons and photons in perovskite photodetectors, this review aims to provide strategies to achieve high-performance photodetectors.
Keywords: electric manipulations; optical manipulations; perovskite photodetectors.
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Recent Progress and Future Opportunities for Optical Manipulation in Halide Perovskite Photodetectors.Nanomaterials (Basel). 2025 May 28;15(11):816. doi: 10.3390/nano15110816. Nanomaterials (Basel). 2025. PMID: 40497863 Free PMC article. Review.
-
Recent progress of group III-V materials-based nanostructures for photodetection.Nanotechnology. 2024 Jul 2;35(38). doi: 10.1088/1361-6528/ad4cf0. Nanotechnology. 2024. PMID: 38759630 Review.
-
Hybrid Organic-Inorganic Perovskite Photodetectors.Small. 2017 Nov;13(41). doi: 10.1002/smll.201702107. Epub 2017 Sep 12. Small. 2017. PMID: 28895306 Review.
-
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation.Nanomicro Lett. 2023 Jul 29;15(1):187. doi: 10.1007/s40820-023-01161-y. Nanomicro Lett. 2023. PMID: 37515723 Free PMC article. Review.
-
Emerging Single-Photon Detectors Based on Low-Dimensional Materials.Small. 2022 Feb;18(5):e2103963. doi: 10.1002/smll.202103963. Epub 2021 Oct 10. Small. 2022. PMID: 34632717 Review.
Cited by
-
Surface Modification of ZnO Nanocrystals with Conjugated Polyelectrolytes Carrying Different Counterions for Inverted Perovskite Light-Emitting Diodes.ACS Omega. 2023 May 18;8(21):19109-19118. doi: 10.1021/acsomega.3c02593. eCollection 2023 May 30. ACS Omega. 2023. PMID: 37273598 Free PMC article.
-
Infrared Photodetection from 2D/3D van der Waals Heterostructures.Nanomaterials (Basel). 2023 Mar 24;13(7):1169. doi: 10.3390/nano13071169. Nanomaterials (Basel). 2023. PMID: 37049263 Free PMC article. Review.
-
Enhancing Optical and Thermal Stability of Blue-Emitting Perovskite Nanocrystals through Surface Passivation with Sulfonate or Sulfonic Acid Ligands.Nanomaterials (Basel). 2024 Jun 18;14(12):1049. doi: 10.3390/nano14121049. Nanomaterials (Basel). 2024. PMID: 38921925 Free PMC article.
-
Revealing the Hidden Mechanism of Enhanced Responsivity of Doped p-i-n Perovskite Photodiodes via Coupled Opto-Electronic Model.Molecules. 2022 Sep 22;27(19):6223. doi: 10.3390/molecules27196223. Molecules. 2022. PMID: 36234760 Free PMC article.
-
Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning.Innovation (Camb). 2022 Apr 27;3(4):100253. doi: 10.1016/j.xinn.2022.100253. eCollection 2022 Jul 12. Innovation (Camb). 2022. PMID: 35602121 Free PMC article. Review.
References
-
- Rose A., Concepts in Photoconductivity and Allied Problems, Interscience Publishers, New York: 1963.
-
- Bube R. H., Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge: 1992.
-
- Saleh B., Teich M., Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ: 2019.
-
- Konstantatos G., Sargent E., Nat. Nanotechnol. 2010, 5, 391. - PubMed
-
- Fridkin V., Crystallogr. Rep. 2001, 46, 654.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous