Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan;20(1):53-69.
doi: 10.1080/14787210.2021.1935237. Epub 2021 Jun 3.

Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies

Affiliations
Review

Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies

Ilias Karaiskos et al. Expert Rev Anti Infect Ther. 2022 Jan.

Abstract

Introduction: The emergence of carbapenemase resistant Gram-negative is designated as an 'urgent' priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome.

Areas covered: This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel β-lactam/β-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed.

Expert opinion: Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-β-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.

Keywords: KPC; Klebsiella pneumoniae; apramycin; carbapenemase; cefiderocol; eravacycline; metallo-β-lactamases; novel β-lactamase inhibitors.

PubMed Disclaimer

LinkOut - more resources