Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Jul;65(1):373-6.
doi: 10.1152/jappl.1988.65.1.373.

Adaptation of bone and tendon to prolonged hindlimb suspension in rats

Affiliations

Adaptation of bone and tendon to prolonged hindlimb suspension in rats

A C Vailas et al. J Appl Physiol (1985). 1988 Jul.

Abstract

The rat hindlimb suspension model was used to ascertain the importance of ground reaction forces in maintaining bone and tendon homeostasis. Young female Sprague-Dawley rats were randomly assigned to either a suspended or a nonsuspended group. After 28 days, femur bones and patellar tendons were obtained for morphological and biochemical analyses. Prolonged suspension induced a significant change in the geometric configuration of the femur middiaphysis by increasing the minimum diameter (12%) without any significant alterations in cortical area, density, mineral, and collagen concentrations. Femur wet weight, length, DNA, and uronic acid concentrations of suspended animals were not significantly different from bones of nonsuspended rats. However, the collagen and proteoglycan concentrations in patellar tendons of suspended rats were 28% lower than the concentrations of matrix proteins in tissues obtained from nonsuspended animals. These data suggest that elimination of ground reaction forces induces alterations in tendon composition and femur diaphyseal shape by changing regional rates in bone remodeling and localized tendon strain. Therefore it appears that ground reaction forces are an important factor in the maintenance of cortical bone and patellar tendon homeostasis during weight-bearing conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources